# cf------(round)#1 C. Ancient Berland Circus(几何)

C. Ancient Berland Circus

time limit per test

2 seconds

memory limit per test

64 megabytes

input

standard input

output

standard output

Nowadays all circuses in Berland have a round arena with diameter 13 meters, but in the past things were different.

In Ancient Berland arenas in circuses were shaped as a regular (equiangular) polygon, the size and the number of angles could vary from one circus to another. In each corner of the arena there was a special pillar, and the rope strung between the pillars marked the arena edges.

Recently the scientists from Berland have discovered the remains of the ancient circus arena. They found only three pillars, the others were destroyed by the time.

You are given the coordinates of these three pillars. Find out what is the smallest area that the arena could have.

Input

The input file consists of three lines, each of them contains a pair of numbers –– coordinates of the pillar. Any coordinate doesn't exceed 1000 by absolute value, and is given with at most six digits after decimal point.

Output

Output the smallest possible area of the ancient arena. This number should be accurate to at least 6 digits after the decimal point. It's guaranteed that the number of angles in the optimal polygon is not larger than 100.

Sample test(s)

Input

```0.000000 0.000000
1.000000 1.000000
0.000000 1.000000```

Output

```1.00000000

对于这样的题目： 思路为：
先求出他的外接圆，得到外接圆的半径rr.
(1外接圆的求法：
｛
（1） 有给定的坐标我们不难求出三条边的边长，rea,reb,rec;
(2) 又海伦公式得到三角形的面积： 周长cc=(rea+reb+rec)/2.0 面积等于： ss=sqrt(cc*(cc-rea)*(cc-reb)*(cc-rec));
(3) rr=rea*reb*rec/(4*ss);  //证明就不详细说了
｝

我们再来求出每一条边对应的圆心角a,b,c;
求出a,b,c圆心角的最大公约数st;

``` 1 #include<iostream>
2 #include<cstdio>
3 #include<cmath>
4 using namespace std;
5 const double PI = 3.1415926535;
6 const double esp=0.01;
7 struct node{
8   double x,y;
9   //求两点之间的长度
10   double solen(node a){
11       return sqrt((a.x-x)*(a.x-x)+(a.y-y)*(a.y-y));
12   }
13 };
14 double dgcd(double a,double b)  //最小公倍数
15 {
16     if(a<esp) return b;
17     if(b<esp) return a;
18     return dgcd(b,fmod(a,b));
19 }
20 int main()
21 {
22   node a,b,c;
23   double rea,reb,rec,Area;
24   double angle[3];  //角度
25   //freopen("test.in","r",stdin);
26   scanf("%lf%lf%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y,&c.x,&c.y);
27         rea=a.solen(b);
28         reb=a.solen(c);
29         rec=b.solen(c);
30    //又海伦公式
31    double cc=(rea+reb+rec)/2.0;
32    Area=sqrt(cc*(cc-rea)*(cc-reb)*(cc-rec));
33   //求得外接圆半径r
34    double  rr=rea*reb*rec/(4*Area);
35    angle[0]=acos(1-rea*rea/(2*rr*rr));
36    angle[1]=acos(1-reb*reb/(2*rr*rr));
37    angle[2]=2*PI-angle[0]-angle[1];
38    //求出角之间的最大公约数
39    double ff=angle[0];
40    for(int i=1;i<3;i++)
41      ff=dgcd(ff,angle[i]);
42   //求得是多少边行
43    printf("%.6lf\n",(rr*rr*PI*sin(ff))/ff);
44   return 0;
45 }```

0 条评论

## 相关文章

39580

24180

43640

26740

### HOJ 2133&POJ 2964 Tourist（动态规划）

Tourist Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1503...

36780

### 运筹学教学 | 十分钟教你求解分配问题(assignment problem)

biu~ biu~ biu~ 我们的运筹学教学推文又出新文拉 还是熟悉的配方，熟悉的味道 今天向大家推出的是 运筹学教学--第六弹 分配问题(Assignmen...

1.5K80

### Leetcode 132 Palindrome Partitioning II

Given a string s, partition s such that every substring of the partition is a p...

221100

12930

13910

32340