前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Spark MLlib之 KMeans聚类算法详解

Spark MLlib之 KMeans聚类算法详解

作者头像
用户1410343
发布2018-03-26 15:32:10
2.1K0
发布2018-03-26 15:32:10
举报
文章被收录于专栏:about云about云

问题导读 1.什么是Spark MLlib ? 2.Spark MLlib 分为哪些类? 3.KMeans算法的基本思想是什么? 4.Spark Mllib KMeans源码包含哪些内容? 一直想学习下Spark 的机器学习,今天总结整理下。 1.什么是Spark MLlib MLlib 是Spark对常用的机器学习算法的实现库,同时包括相关的测试和数据生成器。 2.Spark MLlib 分类 MLlib 目前支持四种常见的机器学习问题:二元分类,回归,聚类以及协同过滤,同时也包括一个底层的梯度下降优化基础算法。 我们知道了分类,这里重点介绍聚类 3.KMeans算法的基本思想 KMeans算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。 K-Means聚类算法主要分为三个步骤: (1)第一步是为待聚类的点寻找聚类中心; (2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去; (3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心; 反复执行(2)、(3),直到聚类中心不再进行大范围移动或者聚类次数达到要求为止。 4.过程演示

下图展示了对n个样本点进行K-means聚类的效果,这里k取2:

(a)未聚类的初始点集;

(b)随机选取两个点作为聚类中心;

(c)计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去;

(d)计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心;

(e)重复(c),计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去;

(f)重复(d),计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心。

5.Spark Mllib KMeans源码分析

class KMeansprivate (

privatevar k: Int,

privatevar maxIterations: Int,

privatevar runs: Int,

privatevar initializationMode: String,

privatevar initializationSteps: Int,

privatevar epsilon: Double,

privatevar seed: Long)extends Serializablewith Logging {

// KMeans类参数:

k:聚类个数,默认2;maxIterations:迭代次数,默认20;runs:并行度,默认1;

initializationMode:初始中心算法,默认"k-means||";initializationSteps:初始步长,默认5;epsilon:中心距离阈值,默认1e-4;seed:随机种子。

代码语言:javascript
复制
  /**
   * Constructs a KMeans instance with default parameters: {k: 2, maxIterations: 20, runs: 1,
   * initializationMode: "k-means||", initializationSteps: 5, epsilon: 1e-4, seed: random}.
   */
  defthis() =this(2,20, 1, KMeans.K_MEANS_PARALLEL,5, 1e-4, Utils.random.nextLong())

// 参数设置
代码语言:javascript
复制
/** Set the number of clusters to create (k). Default: 2. */
  def setK(k: Int):this.type = {
    this.k = k
    this
  }

**省略各个参数设置代码**
// run方法,KMeans主入口函数
  /**
   * Train a K-means model on the given set of points; `data` should be cached for high
   * performance, because this is an iterative algorithm.
   */
  def run(data: RDD[Vector]): KMeansModel = {
    if (data.getStorageLevel == StorageLevel.NONE) {
      logWarning("The input data is not directly cached, which may hurt performance if its"
        + " parent RDDs are also uncached.")
    }
// Compute squared norms and cache them.
// 计算每行数据的L2范数,数据转换:data[Vector]=> data[(Vector, norms)],其中norms是Vector的L2范数,norms就是:。
    val norms = data.map(Vectors.norm(_,2.0))
    norms.persist()
    val zippedData = data.zip(norms).map {case (v, norm) =>
      new VectorWithNorm(v, norm)
    }
    val model = runAlgorithm(zippedData)
    norms.unpersist()
    // Warn at the end of the run as well, for increased visibility.
    if (data.getStorageLevel == StorageLevel.NONE) {
      logWarning("The input data was not directly cached, which may hurt performance if its"
        + " parent RDDs are also uncached.")
    }
    model
  }
// runAlgorithm方法,KMeans实现方法。
  /**
   * Implementation of K-Means algorithm.
   */
  privatedef runAlgorithm(data: RDD[VectorWithNorm]): KMeansModel = {
    val sc = data.sparkContext
    val initStartTime = System.nanoTime()
    val centers =if (initializationMode == KMeans.RANDOM) {
      initRandom(data)
    } else {
      initKMeansParallel(data)
    }
    val initTimeInSeconds = (System.nanoTime() - initStartTime) /1e9
    logInfo(s"Initialization with $initializationMode took " +"%.3f".format(initTimeInSeconds) +
      " seconds.")
    val active = Array.fill(runs)(true)
    val costs = Array.fill(runs)(0.0)
    var activeRuns =new ArrayBuffer[Int] ++ (0 until runs)
    var iteration =0
    val iterationStartTime = System.nanoTime()
//KMeans迭代执行,计算每个样本属于哪个中心点,中心点累加样本的值及计数,然后根据中心点的所有的样本数据进行中心点的更新,并比较更新前的数值,判断是否完成。其中runs代表并行度。
    // Execute iterations of Lloyd's algorithm until all runs have converged
    while (iteration < maxIterations && !activeRuns.isEmpty) {
      type WeightedPoint = (Vector, Long)
      def mergeContribs(x: WeightedPoint, y: WeightedPoint): WeightedPoint = {
        axpy(1.0, x._1, y._1)
        (y._1, x._2 + y._2)
      }
      val activeCenters = activeRuns.map(r => centers(r)).toArray
      val costAccums = activeRuns.map(_ => sc.accumulator(0.0))
      val bcActiveCenters = sc.broadcast(activeCenters)
      // Find the sum and count of points mapping to each center
//计算属于每个中心点的样本,对每个中心点的样本进行累加和计算;
runs代表并行度,k中心点个数,sums代表中心点样本累加值,counts代表中心点样本计数;
contribs代表((并行度I,中心J),(中心J样本之和,中心J样本计数和));
findClosest方法:找到点与所有聚类中心最近的一个中心;
      val totalContribs = data.mapPartitions { points =>
        val thisActiveCenters = bcActiveCenters.value
        val runs = thisActiveCenters.length
        val k = thisActiveCenters(0).length
        val dims = thisActiveCenters(0)(0).vector.size
        val sums = Array.fill(runs, k)(Vectors.zeros(dims))
        val counts = Array.fill(runs, k)(0L)
        points.foreach { point =>
          (0 until runs).foreach { i =>
           val (bestCenter, cost) = KMeans.findClosest(thisActiveCenters(i), point)
           costAccums(i) += cost
           val sum = sums(i)(bestCenter)
           axpy(1.0, point.vector, sum)
           counts(i)(bestCenter) += 1
          }
        }
        val contribs =for (i <-0 until runs; j <-0 until k) yield {
          ((i, j), (sums(i)(j), counts(i)(j)))
        }
        contribs.iterator
      }.reduceByKey(mergeContribs).collectAsMap()
//更新中心点,更新中心点= sum/count;
判断newCenter与centers之间的距离是否 > epsilon * epsilon;
      // Update the cluster centers and costs for each active run
      for ((run, i) <- activeRuns.zipWithIndex) {
        var changed =false
        var j =0
        while (j < k) {
          val (sum, count) = totalContribs((i, j))
          if (count !=0) {
           scal(1.0 / count, sum)
           val newCenter =new VectorWithNorm(sum)
           if (KMeans.fastSquaredDistance(newCenter, centers(run)(j)) > epsilon * epsilon) {
             changed = true
           }
           centers(run)(j) = newCenter
          }
          j += 1
        }
        if (!changed) {
          active(run) = false
          logInfo("Run " + run +" finished in " + (iteration +1) + " iterations")
        }
        costs(run) = costAccums(i).value
      }
      activeRuns = activeRuns.filter(active(_))
      iteration += 1
    }
    val iterationTimeInSeconds = (System.nanoTime() - iterationStartTime) /1e9
    logInfo(s"Iterations took " +"%.3f".format(iterationTimeInSeconds) +" seconds.")
    if (iteration == maxIterations) {
      logInfo(s"KMeans reached the max number of iterations: $maxIterations.")
    } else {
      logInfo(s"KMeans converged in $iteration iterations.")
    }
    val (minCost, bestRun) = costs.zipWithIndex.min
    logInfo(s"The cost for the best run is $minCost.")
    new KMeansModel(centers(bestRun).map(_.vector))
  }
//findClosest方法:找到点与所有聚类中心最近的一个中心;
/**
   * Returns the index of the closest center to the given point, as well as the squared distance.
   */
  private[mllib]def findClosest(
      centers: TraversableOnce[VectorWithNorm],
      point: VectorWithNorm): (Int, Double) = {
    var bestDistance = Double.PositiveInfinity
    var bestIndex =0
    var i =0
    centers.foreach { center =>
      // Since `\|a - b\| \geq |\|a\| - \|b\||`, we can use this lower bound to avoid unnecessary
      // distance computation.
      var lowerBoundOfSqDist = center.norm - point.norm
      lowerBoundOfSqDist = lowerBoundOfSqDist * lowerBoundOfSqDist
      if (lowerBoundOfSqDist < bestDistance) {
        val distance: Double = fastSquaredDistance(center, point)
        if (distance < bestDistance) {
          bestDistance = distance
          bestIndex = i
        }
      }
      i += 1
    }
    (bestIndex, bestDistance)
  }

findClosest方法中:var lowerBoundOfSqDist = center.norm - point.norm

lowerBoundOfSqDist = lowerBoundOfSqDist * lowerBoundOfSqDist

如果中心点center是(a1,b1),需要计算的点point是(a2,b2),那么lowerBoundOfSqDist是:

如下是展开式,第二个是真正计算欧式距离时的除去开平方的公式。(在查找最短距离的时候无需计算开方,因为只需要计算出开方里面的式子就可以进行比较了,mllib也是这样做的)

可轻易证明上面两式的第一式将会小于等于第二式,因此在进行距离比较的时候,先计算很容易计算的lowerBoundOfSqDist,如果lowerBoundOfSqDist都不小于之前计算得到的最小距离bestDistance,那真正的欧式距离也不可能小于bestDistance了,因此这种情况下就不需要去计算欧式距离,省去很多计算工作。

如果lowerBoundOfSqDist小于了bestDistance,则进行距离的计算,调用fastSquaredDistance,这个方法将调用MLUtils.scala里面的fastSquaredDistance方法,计算真正的欧式距离,代码如下:

代码语言:javascript
复制
/**
   * Returns the squared Euclidean distance between two vectors. The following formula will be used
   * if it does not introduce too much numerical error:
   * <pre>
   *   \|a - b\|_2^2 = \|a\|_2^2 + \|b\|_2^2 - 2 a^T b.
   * </pre>
   * When both vector norms are given, this is faster than computing the squared distance directly,
   * especially when one of the vectors is a sparse vector.
   *
   * @param v1 the first vector
   * @param norm1 the norm of the first vector, non-negative
   * @param v2 the second vector
   * @param norm2 the norm of the second vector, non-negative
   * @param precision desired relative precision for the squared distance
   * @return squared distance between v1 and v2 within the specified precision
   */
  private[mllib]def fastSquaredDistance(
      v1: Vector,
      norm1: Double,
      v2: Vector,
      norm2: Double,
      precision: Double = 1e-6): Double = {
    val n = v1.size
    require(v2.size == n)
    require(norm1 >= 0.0 && norm2 >=0.0)
    val sumSquaredNorm = norm1 * norm1 + norm2 * norm2
    val normDiff = norm1 - norm2
    var sqDist =0.0
    /*
     * The relative error is
     * <pre>
     * EPSILON * ( \|a\|_2^2 + \|b\\_2^2 + 2 |a^T b|) / ( \|a - b\|_2^2 ),
     * </pre>
     * which is bounded by
     * <pre>
     * 2.0 * EPSILON * ( \|a\|_2^2 + \|b\|_2^2 ) / ( (\|a\|_2 - \|b\|_2)^2 ).
     * </pre>
     * The bound doesn't need the inner product, so we can use it as a sufficient condition to
     * check quickly whether the inner product approach is accurate.
     */
    val precisionBound1 =2.0 * EPSILON * sumSquaredNorm / (normDiff * normDiff + EPSILON)
    if (precisionBound1 < precision) {
      sqDist = sumSquaredNorm - 2.0 * dot(v1, v2)
    } elseif (v1.isInstanceOf[SparseVector] || v2.isInstanceOf[SparseVector]) {
      val dotValue = dot(v1, v2)
      sqDist = math.max(sumSquaredNorm - 2.0 * dotValue,0.0)
      val precisionBound2 = EPSILON * (sumSquaredNorm +2.0 * math.abs(dotValue)) /
        (sqDist + EPSILON)
      if (precisionBound2 > precision) {
        sqDist = Vectors.sqdist(v1, v2)
      }
    } else {
      sqDist = Vectors.sqdist(v1, v2)
    }
    sqDist
  }

fastSquaredDistance方法会先计算一个精度,有关精度的计算val precisionBound1 = 2.0 * EPSILON * sumSquaredNorm / (normDiff * normDiff + EPSILON),如果在精度满足条件的情况下,欧式距离sqDist = sumSquaredNorm - 2.0 * v1.dot(v2),sumSquaredNorm即为

,2.0 * v1.dot(v2)即为

。这也是之前将norm计算出来的好处。如果精度不满足要求,则进行原始的距离计算公式了

,即调用Vectors.sqdist(v1, v2)。

6.Mllib KMeans实例

1、数据

数据格式为:特征1 特征2 特征3 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.2 9.0 9.0 9.0 9.1 9.1 9.1 9.2 9.2 9.2

2、代码

代码语言:javascript
复制
  //1读取样本数据
  valdata_path ="/home/jb-huangmeiling/kmeans_data.txt"
  valdata =sc.textFile(data_path)
  valexamples =data.map { line =>
    Vectors.dense(line.split(' ').map(_.toDouble))
  }.cache()
  valnumExamples =examples.count()
  println(s"numExamples = $numExamples.")
  //2建立模型
  valk =2
  valmaxIterations =20
  valruns =2
  valinitializationMode ="k-means||"
  valmodel = KMeans.train(examples,k, maxIterations,runs, initializationMode)
  //3计算测试误差
  valcost =model.computeCost(examples)
  println(s"Total cost = $cost.")



参考:
Spark MLlib KMeans聚类算法
作者:sunbow0
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2016-09-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 about云 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档