Java集合深度解析之LinkedList

LinkedList简介

LinkedList是基于双向循环链表(从源码中可以很容易看出)实现的,除了可以当做链表来操作外,它还可以当做栈、队列和双端队列来使用。

LinkedList同样是非线程安全的,只在单线程下适合使用。

LinkedList实现了Serializable接口,因此它支持序列化,能够通过序列化传输,实现了Cloneable接口,能被克隆。

ArrayList源码剖析

LinkedList的源码如下(加入了比较详细的注释):

package java.util;

public class LinkedList<E> extends AbstractSequentialList<E> implements
        List<E>, Deque<E>, Cloneable, java.io.Serializable {
    // 链表的表头,表头不包含任何数据。Entry是个链表类数据结构。
    private transient Entryheader = new Entry(null, null, null);

    // LinkedList中元素个数
    private transient int size = 0;

    // 默认构造函数:创建一个空的链表
    public LinkedList() {
        header.next = header.previous = header;
    }

    // 包含“集合”的构造函数:创建一个包含“集合”的LinkedList
    public LinkedList(Collection c) {
        this();
        addAll(c);
    }

    // 获取LinkedList的第一个元素
    public E getFirst() {
        if (size == 0)
            throw new NoSuchElementException();

        // 链表的表头header中不包含数据。
        // 这里返回header所指下一个节点所包含的数据。
        return header.next.element;
    }

    // 获取LinkedList的最后一个元素
    public E getLast() {
        if (size == 0)
            throw new NoSuchElementException();

        // 由于LinkedList是双向链表;而表头header不包含数据。
        // 因而,这里返回表头header的前一个节点所包含的数据。
        return header.previous.element;
    }

    // 删除LinkedList的第一个元素
    public E removeFirst() {
        return remove(header.next);
    }

    // 删除LinkedList的最后一个元素
    public E removeLast() {
        return remove(header.previous);
    }

    // 将元素添加到LinkedList的起始位置
    public void addFirst(E e) {
        addBefore(e, header.next);
    }

    // 将元素添加到LinkedList的结束位置
    public void addLast(E e) {
        addBefore(e, header);
    }

    // 判断LinkedList是否包含元素(o)
    public boolean contains(Object o) {
        return indexOf(o) != -1;
    }

    // 返回LinkedList的大小
    public int size() {
        return size;
    }

    // 将元素(E)添加到LinkedList中
    public boolean add(E e) {
        // 将节点(节点数据是e)添加到表头(header)之前。
        // 即,将节点添加到双向链表的末端。
        addBefore(e, header);
        return true;
    }

    // 从LinkedList中删除元素(o)
    // 从链表开始查找,如存在元素(o)则删除该元素并返回true;
    // 否则,返回false。
    public boolean remove(Object o) {
        if (o == null) {
            // 若o为null的删除情况
            for (Entrye = header.next; e != header; e = e.next) {
                if (e.element == null) {
                    remove(e);
                    return true;
                }
            }
        } else {
            // 若o不为null的删除情况
            for (Entrye = header.next; e != header; e = e.next) {
                if (o.equals(e.element)) {
                    remove(e);
                    return true;
                }
            }
        }
        return false;
    }

    // 将“集合(c)”添加到LinkedList中。
    // 实际上,是从双向链表的末尾开始,将“集合(c)”添加到双向链表中。
    public boolean addAll(Collection c) {
        return addAll(size, c);
    }

    // 从双向链表的index开始,将“集合(c)”添加到双向链表中。
    public boolean addAll(int index, Collection c) {
        if (index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: " + index + ", Size: "
                    + size);
        Object[] a = c.toArray();
        // 获取集合的长度
        int numNew = a.length;
        if (numNew == 0)
            return false;
        modCount++;

        // 设置“当前要插入节点的后一个节点”
        Entrysuccessor = (index == size ? header : entry(index));
        // 设置“当前要插入节点的前一个节点”
        Entrypredecessor = successor.previous;
        // 将集合(c)全部插入双向链表中
        for (int i = 0; i < numNew; i++) {
            Entrye = new Entry((E) a[i], successor, predecessor);
            predecessor.next = e;
            predecessor = e;
        }
        successor.previous = predecessor;

        // 调整LinkedList的实际大小
        size += numNew;
        return true;
    }

    // 清空双向链表
    public void clear() {
        Entrye = header.next;
        // 从表头开始,逐个向后遍历;对遍历到的节点执行一下操作:
        // (01) 设置前一个节点为null
        // (02) 设置当前节点的内容为null
        // (03) 设置后一个节点为“新的当前节点”
        while (e != header) {
            Entrynext = e.next;
            e.next = e.previous = null;
            e.element = null;
            e = next;
        }
        header.next = header.previous = header;
        // 设置大小为0
        size = 0;
        modCount++;
    }

    // 返回LinkedList指定位置的元素
    public E get(int index) {
        return entry(index).element;
    }

    // 设置index位置对应的节点的值为element
    public E set(int index, E element) {
        Entrye = entry(index);
        E oldVal = e.element;
        e.element = element;
        return oldVal;
    }

    // 在index前添加节点,且节点的值为element
    public void add(int index, E element) {
        addBefore(element, (index == size ? header : entry(index)));
    }

    // 删除index位置的节点
    public E remove(int index) {
        return remove(entry(index));
    }

    // 获取双向链表中指定位置的节点
    private Entryentry(int index) {
        if (index < 0 || index >= size)
            throw new IndexOutOfBoundsException("Index: " + index + ", Size: "
                    + size);
        Entrye = header;
        // 获取index处的节点。
        // 若index < 双向链表长度的1/2,则从前先后查找;
        // 否则,从后向前查找。
        if (index < (size >> 1)) {
            for (int i = 0; i <= index; i++)
                e = e.next;
        } else {
            for (int i = size; i > index; i--)
                e = e.previous;
        }
        return e;
    }

    // 从前向后查找,返回“值为对象(o)的节点对应的索引”
    // 不存在就返回-1
    public int indexOf(Object o) {
        int index = 0;
        if (o == null) {
            for (Entry e = header.next; e != header; e = e.next) {
                if (e.element == null)
                    return index;
                index++;
            }
        } else {
            for (Entry e = header.next; e != header; e = e.next) {
                if (o.equals(e.element))
                    return index;
                index++;
            }
        }
        return -1;
    }

    // 从后向前查找,返回“值为对象(o)的节点对应的索引”
    // 不存在就返回-1
    public int lastIndexOf(Object o) {
        int index = size;
        if (o == null) {
            for (Entry e = header.previous; e != header; e = e.previous) {
                index--;
                if (e.element == null)
                    return index;
            }
        } else {
            for (Entry e = header.previous; e != header; e = e.previous) {
                index--;
                if (o.equals(e.element))
                    return index;
            }
        }
        return -1;
    }

    // 返回第一个节点
    // 若LinkedList的大小为0,则返回null
    public E peek() {
        if (size == 0)
            return null;
        return getFirst();
    }

    // 返回第一个节点
    // 若LinkedList的大小为0,则抛出异常
    public E element() {
        return getFirst();
    }

    // 删除并返回第一个节点
    // 若LinkedList的大小为0,则返回null
    public E poll() {
        if (size == 0)
            return null;
        return removeFirst();
    }

    // 将e添加双向链表末尾
    public boolean offer(E e) {
        return add(e);
    }

    // 将e添加双向链表开头
    public boolean offerFirst(E e) {
        addFirst(e);
        return true;
    }

    // 将e添加双向链表末尾
    public boolean offerLast(E e) {
        addLast(e);
        return true;
    }

    // 返回第一个节点
    // 若LinkedList的大小为0,则返回null
    public E peekFirst() {
        if (size == 0)
            return null;
        return getFirst();
    }

    // 返回最后一个节点
    // 若LinkedList的大小为0,则返回null
    public E peekLast() {
        if (size == 0)
            return null;
        return getLast();
    }

    // 删除并返回第一个节点
    // 若LinkedList的大小为0,则返回null
    public E pollFirst() {
        if (size == 0)
            return null;
        return removeFirst();
    }

    // 删除并返回最后一个节点
    // 若LinkedList的大小为0,则返回null
    public E pollLast() {
        if (size == 0)
            return null;
        return removeLast();
    }

    // 将e插入到双向链表开头
    public void push(E e) {
        addFirst(e);
    }

    // 删除并返回第一个节点
    public E pop() {
        return removeFirst();
    }

    // 从LinkedList开始向后查找,删除第一个值为元素(o)的节点
    // 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
    public boolean removeFirstOccurrence(Object o) {
        return remove(o);
    }

    // 从LinkedList末尾向前查找,删除第一个值为元素(o)的节点
    // 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
    public boolean removeLastOccurrence(Object o) {
        if (o == null) {
            for (Entrye = header.previous; e != header; e = e.previous) {
                if (e.element == null) {
                    remove(e);
                    return true;
                }
            }
        } else {
            for (Entrye = header.previous; e != header; e = e.previous) {
                if (o.equals(e.element)) {
                    remove(e);
                    return true;
                }
            }
        }
        return false;
    }

    // 返回“index到末尾的全部节点”对应的ListIterator对象(List迭代器)
    public ListIteratorlistIterator(int index) {
        return new ListItr(index);
    }

    // List迭代器
    private class ListItr implements ListIterator<E> {
        // 上一次返回的节点
        private EntrylastReturned = header;
        // 下一个节点
        private Entrynext;
        // 下一个节点对应的索引值
        private int nextIndex;
        // 期望的改变计数。用来实现fail-fast机制。
        private int expectedModCount = modCount;

        // 构造函数。
        // 从index位置开始进行迭代
        ListItr(int index) {
            // index的有效性处理
            if (index < 0 || index > size)
                throw new IndexOutOfBoundsException("Index: " + index
                        + ", Size: " + size);
            // 若 “index 小于 ‘双向链表长度的一半’”,则从第一个元素开始往后查找;
            // 否则,从最后一个元素往前查找。
            if (index < (size >> 1)) {
                next = header.next;
                for (nextIndex = 0; nextIndex < index; nextIndex++)
                    next = next.next;
            } else {
                next = header;
                for (nextIndex = size; nextIndex > index; nextIndex--)
                    next = next.previous;
            }
        }

        // 是否存在下一个元素
        public boolean hasNext() {
            // 通过元素索引是否等于“双向链表大小”来判断是否达到最后。
            return nextIndex != size;
        }

        // 获取下一个元素
        public E next() {
            checkForComodification();
            if (nextIndex == size)
                throw new NoSuchElementException();

            lastReturned = next;
            // next指向链表的下一个元素
            next = next.next;
            nextIndex++;
            return lastReturned.element;
        }

        // 是否存在上一个元素
        public boolean hasPrevious() {
            // 通过元素索引是否等于0,来判断是否达到开头。
            return nextIndex != 0;
        }

        // 获取上一个元素
        public E previous() {
            if (nextIndex == 0)
                throw new NoSuchElementException();

            // next指向链表的上一个元素
            lastReturned = next = next.previous;
            nextIndex--;
            checkForComodification();
            return lastReturned.element;
        }

        // 获取下一个元素的索引
        public int nextIndex() {
            return nextIndex;
        }

        // 获取上一个元素的索引
        public int previousIndex() {
            return nextIndex - 1;
        }

        // 删除当前元素。
        // 删除双向链表中的当前节点
        public void remove() {
            checkForComodification();
            EntrylastNext = lastReturned.next;
            try {
                LinkedList.this.remove(lastReturned);
            } catch (NoSuchElementException e) {
                throw new IllegalStateException();
            }
            if (next == lastReturned)
                next = lastNext;
            else
                nextIndex--;
            lastReturned = header;
            expectedModCount++;
        }

        // 设置当前节点为e
        public void set(E e) {
            if (lastReturned == header)
                throw new IllegalStateException();
            checkForComodification();
            lastReturned.element = e;
        }

        // 将e添加到当前节点的前面
        public void add(E e) {
            checkForComodification();
            lastReturned = header;
            addBefore(e, next);
            nextIndex++;
            expectedModCount++;
        }

        // 判断 “modCount和expectedModCount是否相等”,依次来实现fail-fast机制。
        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    // 双向链表的节点所对应的数据结构。
    // 包含3部分:上一节点,下一节点,当前节点值。
    private static class Entry<E> {
        // 当前节点所包含的值
        E element;
        // 下一个节点
        Entrynext;
        // 上一个节点
        Entryprevious;

        /**
         * 链表节点的构造函数。 参数说明: element —— 节点所包含的数据 next —— 下一个节点 previous —— 上一个节点
         */
        Entry(E element, Entrynext, Entryprevious) {
            this.element = element;
            this.next = next;
            this.previous = previous;
        }
    }

    // 将节点(节点数据是e)添加到entry节点之前。
    private EntryaddBefore(E e, Entryentry) {
        // 新建节点newEntry,将newEntry插入到节点e之前;并且设置newEntry的数据是e
        EntrynewEntry = new Entry(e, entry, entry.previous);
        newEntry.previous.next = newEntry;
        newEntry.next.previous = newEntry;
        // 修改LinkedList大小
        size++;
        // 修改LinkedList的修改统计数:用来实现fail-fast机制。
        modCount++;
        return newEntry;
    }

    // 将节点从链表中删除
    private E remove(Entrye) {
        if (e == header)
            throw new NoSuchElementException();

        E result = e.element;
        e.previous.next = e.next;
        e.next.previous = e.previous;
        e.next = e.previous = null;
        e.element = null;
        size--;
        modCount++;
        return result;
    }

    // 反向迭代器
    public IteratordescendingIterator() {
        return new DescendingIterator();
    }

    // 反向迭代器实现类。
    private class DescendingIterator implements Iterator {
        final ListItr itr = new ListItr(size());

        // 反向迭代器是否下一个元素。
        // 实际上是判断双向链表的当前节点是否达到开头
        public boolean hasNext() {
            return itr.hasPrevious();
        }

        // 反向迭代器获取下一个元素。
        // 实际上是获取双向链表的前一个节点
        public E next() {
            return itr.previous();
        }

        // 删除当前节点
        public void remove() {
            itr.remove();
        }
    }

    // 返回LinkedList的Object[]数组
    public Object[] toArray() {
        // 新建Object[]数组
        Object[] result = new Object[size];
        int i = 0;
        // 将链表中所有节点的数据都添加到Object[]数组中
        for (Entrye = header.next; e != header; e = e.next)
            result[i++] = e.element;
        return result;
    }

    // 返回LinkedList的模板数组。所谓模板数组,即可以将T设为任意的数据类型
    public T[] toArray(T[] a) {
        // 若数组a的大小 < LinkedList的元素个数(意味着数组a不能容纳LinkedList中全部元素)
        // 则新建一个T[]数组,T[]的大小为LinkedList大小,并将该T[]赋值给a。
        if (a.length < size)
            a = (T[]) java.lang.reflect.Array.newInstance(a.getClass()
                    .getComponentType(), size);
        // 将链表中所有节点的数据都添加到数组a中
        int i = 0;
        Object[] result = a;
        for (Entrye = header.next; e != header; e = e.next)
            result[i++] = e.element;

        if (a.length > size)
            a[size] = null;

        return a;
    }

    // 克隆函数。返回LinkedList的克隆对象。
    public Object clone() {
        LinkedListclone = null;
        // 克隆一个LinkedList克隆对象
        try {
            clone = (LinkedList) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError();
        }

        // 新建LinkedList表头节点
        clone.header = new Entry(null, null, null);
        clone.header.next = clone.header.previous = clone.header;
        clone.size = 0;
        clone.modCount = 0;

        // 将链表中所有节点的数据都添加到克隆对象中
        for (Entrye = header.next; e != header; e = e.next)
            clone.add(e.element);

        return clone;
    }

    // java.io.Serializable的写入函数
    // 将LinkedList的“容量,所有的元素值”都写入到输出流中
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {
        // Write out any hidden serialization magic
        s.defaultWriteObject();

        // 写入“容量”
        s.writeInt(size);

        // 将链表中所有节点的数据都写入到输出流中
        for (Entry e = header.next; e != header; e = e.next)
            s.writeObject(e.element);
    }

    // java.io.Serializable的读取函数:根据写入方式反向读出
    // 先将LinkedList的“容量”读出,然后将“所有的元素值”读出
    private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
        // Read in any hidden serialization magic
        s.defaultReadObject();

        // 从输入流中读取“容量”
        int size = s.readInt();

        // 新建链表表头节点
        header = new Entry(null, null, null);
        header.next = header.previous = header;

        // 从输入流中将“所有的元素值”并逐个添加到链表中
        for (int i = 0; i < size; i++)
            addBefore((E) s.readObject(), header);
    }

}

几点总结

关于LinkedList的源码,给出几点比较重要的总结:

1、从源码中很明显可以看出,LinkedList的实现是基于双向循环链表的,且头结点中不存放数据,如下图;

2、注意两个不同的构造方法。无参构造方法直接建立一个仅包含head节点的空链表,包含Collection的构造方法,先调用无参构造方法建立一个空链表,而后将Collection中的数据加入到链表的尾部后面。

3、在查找和删除某元素时,源码中都划分为该元素为null和不为null两种情况来处理,LinkedList中允许元素为null。

4、LinkedList是基于链表实现的,因此不存在容量不足的问题,所以这里没有扩容的方法。

5、注意源码中的Entryentry(int index)方法。该方法返回双向链表中指定位置处的节点,而链表中是没有下标索引的,要指定位置出的元素,就要遍历该链表。

从源码的实现中,我们看到这里有一个加速动作。源码中先将index与长度size的一半比较,如果indexsize/2,就只从位置size往前遍历到位置index处。这样可以减少一部分不必要的遍历,从而提高一定的效率(实际上效率还是很低)。

6、注意链表类对应的数据结构Entry。如下;

// 双向链表的节点所对应的数据结构。    
// 包含3部分:上一节点,下一节点,当前节点值。    
private static class Entry<E> {    
    // 当前节点所包含的值    
    E element;    
    // 下一个节点    
    Entrynext;    
    // 上一个节点    
    Entryprevious;    

    /**   
     * 链表节点的构造函数。   
     * 参数说明:   
     *   element  —— 节点所包含的数据   
     *   next      —— 下一个节点   
     *   previous —— 上一个节点   
     */   
    Entry(E element, Entrynext, Entryprevious) {    
        this.element = element;    
        this.next = next;    
        this.previous = previous;    
    }    
} 

7、LinkedList是基于链表实现的,因此插入删除效率高,查找效率低(虽然有一个加速动作)。

8、要注意源码中还实现了栈和队列的操作方法,因此也可以作为栈、队列和双端队列来使用。

原链: http://blog.csdn.net/ns_code/article/details/35787253

原文发布于微信公众号 - 互扯程序(chat_routine)

原文发表时间:2018-01-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏编程

详解栈及其实现

转自:melonstreet http://www.cnblogs.com/QG-whz/p/5170418.html 栈的特点 栈(Stack)是一种线性存储...

23360
来自专栏架构之路

判断栈的出栈顺序合法性

栈的出栈顺序合法性是指给定一系列元素,如1 - N,按照从小到大的方式入栈,每个元素的出栈时机不定。题目给定一个出栈顺序,我们来判断这个出栈顺序有没有可能发生。...

30730
来自专栏博岩Java大讲堂

Java集合--Queue(Java中实现2)

54250
来自专栏刘君君

JDK8的LinkedList源码学习笔记

22940
来自专栏个人分享

Java方法总结与源码解析(未完待续)

源码通过获取字符串的长度,遍历每个字符,将传入的字符进行比较,如果与需要截取的字符相同,则调用substring方法。

7220
来自专栏码匠的流水账

java计算集合对称差

两个集合的对称差是只属于其中一个集合,而不属于另一个集合的元素组成的集合。 集合A和B的对称差通常表示为AΔB,对称差的符号在有些图论书籍中也使用符号⊕来表示。...

11030
来自专栏Bingo的深度学习杂货店

Q20 Valid Parentheses

Given a string containing just the characters '(', ')', '{', '}', '[' and ']', d...

29340
来自专栏desperate633

LeetCode 20. Valid Parentheses题目分析代码

给定一个字符串所表示的括号序列,包含以下字符: '(', ')', '{', '}', '[' and ']', 判定是否是有效的括号序列。

9020
来自专栏俞其荣的博客

LinkedList内部原理解析Header源码分析Footer

24060
来自专栏Java 源码分析

LinkedList 源码分析

LinkedList 源码分析 1. 在阅读源码时做了大量的注释,并且做了一些测试分析源码内的执行流程,由于博客篇幅有限,并且代码阅读起来没有 IDE 方便,...

28340

扫码关注云+社区

领取腾讯云代金券