Selective Search for Object Recognition 论文笔记【图片目标分割】

 这篇笔记,仅仅是对选择性算法介绍一下原理性知识,不对公式进行推倒.

前言:

这篇论文介绍的是,如果快速的找到的可能是物体目标的区域,不像使用传统的滑动窗口来暴力进行区域识别.这里是使用算法从多个维度对找到图片中,可能的区域目标,减少目标碎片,提升物体检测效率. 下面是这篇文章的笔记:

介绍及引言:

   图片是分层次的,比如下图中a:

   沙拉和匙在沙拉碗里,而碗又在桌子上,另外桌子和木头有关或者说桌子和桌子上的所有东西有关.所以图片中的目标是有层次的. 图片分割应该按层次来,也不存在使用单个策略这样通用的方法来进行图片分割,所以对图片分割都是基于多个策略,但是这样又会在合并区域的时候产生冲突. 比如说上图中的b图,猫可以使用颜色进行分割,但是它们的纹理是一样的. 相反的 ; 图C中的变色龙和周围的叶子在颜色上是相似的,但是在纹理上确实不同的.最后,图d中,汽车轮子和汽车在颜色和纹理上都是不同的,但是和汽车的形状吻合度很高. 对于这三个图,采用他们其中的一种视觉特征是无法来对它们进行图片分割的.

  在这篇文章中,作者结合直觉分割算法和穷举搜索算法来提出这个selective search(选择性搜索)算法,使用直觉分割算法是希望达到结合图片的结构层次从下至上来分割,来产生目标区域. 使用穷举搜索算法的目的是得到所有可能是目标的区域. 选择性搜索算法,使用的是多样化在抽样算法

  在这篇文章中,作者主要从下面问题来介绍选择性策略:

           1.  选择性策略采用的是什么样的多样性策略来自适应分割图片?.

      2.  选择性策略在图片中生成高质量小目标的效率怎么样?

      3.  能否使用选择性策略来结合分类模型和外观模型来进行目标识别?

选择性算法介绍:

 特点介绍:

    1. 适用所有尺寸.

     目标可以以任意尺寸出现在图片中,甚至有些目标和其他目标的边界并不明显,面对这些问题,选择性算法会对所有的目标尺寸进行记录,就像下图一样,

可以很容易使用层次算法来实现.

     2. 多样化.

       单个的策略无法去处理各种各样差异化区域. 所以使用了多种策略比如颜色空间,纹理,吻合度等.

                 3. 快速的计算.

流程介绍:

 选择性算法使用的是按层次合并算法(Hierarchical Grouping),基本思路是这样:

    通过对一张图片从低向上进行层次划分,当我们划出一个大区域时,继续在这个大区域中迭代划分,直到划不出区域为止.并将这个过程中产生的所有的区域记录下来,

在通过颜色,纹理,吻合度,大小来将这些细碎的区域进行合并.这种方式不需要设定滑动窗口,滑动格子,可以适应于任何目标的尺寸.

             那么这个算法的具体过程:

   1. 首先使用Efficient Graph-Based Image Segmentation论文中的方法来按层次来快速得到分割区域R

   2. 初始化相似度集合S

           3. 从分割区域集合R中来两两计算相似度,放入到相似度S集合中.

           4. 从相似度S集合中,取出相似度最高的两个分割区域.然后将这两个区域进行合并,并放入到R中,然后从相似度S集合中去除掉

    这两个分割区域相关联的区域.然后计算合并的新区域 和它邻近区域的相似性,放入到S中,这样循环.直到S集合为空集 

   5.重复3直到这个区域变为一个.

   然后输出在这个过程中的所有的变化的区域.

关于多样性策略:

  分为两个大部分: 颜色空间多样性,区域相似度多样性 

  1.  颜色空间多样性包含八种:  [1]. RGB,[2]. I灰度图(grey), [3]. Lab,[4]. RGB图像中归一化的rg通道和图像的灰度图. [5].HSV

   [6].归一化的rbg,[7].C,[8].H

       2. 区域相似度多样性: 对纹理,吻合度,大小这几个特征进行计算

具体推倒过程,见论文.

那么选择性算法在物体识别中如何使用的呢?

我们使用选择性算法获取到一系列可能有目标的区域L,然后我们将我们事先打好标签的目标区域(我们成为的GT)作为正样本,在L集合中的区域中和GT的IOU在0.2~0.5之间的作为这个类的负样本,对于重合度及IOU超过0.7的负样本,我将它丢掉,然后对这些区域的数据,进行特征提取,论文中使用的SIFT算法,然后将这些特征中一起放入到线性SVM进行该类进行训练.然后将得分很高的错误样本,放入到负样本中继续训练.依次往复.

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏技术随笔

[译] 用于语义分割的全卷积网络FCN(UC Berkeley)题目:用于语义分割的全卷积网络摘要1. 引言2. 相关工作3. 全卷积网络4 分割架构5 结果6 结论附录A IU上界附录B 更多的结果

42270
来自专栏wOw的Android小站

[深度学习]Charpter 9:卷积网络

卷积网络convolutional network,也叫做卷积神经网络convolutional neural network CNN 专门用来处理类似网格结构...

13810
来自专栏CVer

一文读懂VGG网络

网上太多关于CNN经典网络的介绍了,泛读的文章大多都从LeNet说到ResNet/DenseNet;而精读的文章质量参次不齐,而且很多介绍的并不具体。

16900
来自专栏机器之心

从90年代的SRNN开始,纵览循环神经网络27年的研究进展

287120
来自专栏智能算法

初识支持向量机原理

支持向量机作为机器学习中最为难于理解的算法,小编将以三篇的篇幅去讲解小编自己理解的SVM算法。主要包括:初识支持向量机原理、SVM如何解决线性不可分、SVM实践...

36280
来自专栏深度学习那些事儿

利用pytorch实现Fooling Images(添加特定噪声到原始图像,使神经网络误识别)

fooling images,顾名思义,就是指一张图片,虽然上面通过肉眼看到的是松鼠(举个例子),但是因为这张图片加了一些特定的噪声,所以神经网络会将它误识别为...

78050
来自专栏贾志刚-OpenCV学堂

深度学习之迁移学习介绍与使用

在深度学习领域,通过预训练模型作为检查点开始训练生成神经网络模型实现对新任务的支持,这种方法通常被称为迁移学习,它的好处是不用再重头开始设计与训练一个全新的网络...

24620
来自专栏机器之心

学界 | 在有池化层、1步幅的CNN上减少冗余计算,一种广泛适用的架构转换方法

28350
来自专栏目标检测和深度学习

入门 | 从零开始,了解元学习

9910
来自专栏机器学习养成记

基于随机森林识别特征重要性(翻译)

博主Slav Ivanov 的文章《Identifying churn drivers with Random Forests 》部分内容翻译。博主有一款自己的...

60780

扫码关注云+社区

领取腾讯云代金券