使用方向变换(directional transform)图像分块压缩感知

论文的思路是先介绍分块压缩感知BCS,然后介绍使用投影和硬阈值方法的迭代投影方法PL,接着将PL与维纳滤波器结合形成SPL(平滑PL),并且介绍了稀疏表示的几种基,提出了两种效果较好的稀疏基:CT与DDWT,并且将PL中的硬阈值用bivariate shrinkage(双变量收缩)代替。

BCS+SPL(PL+维纳滤波平滑)+CT or DDWT

首先介绍PL的框架,是赋予一些初值,通过迭代来逼近最优解。

其中γ为尺度因子,使用了ΦTΦ中最大的特征值,τ(i)是每次迭代中设定的门限值,CS中运用PL在一定程度上降低了计算复杂度,并且PL算法可以灵活的增加所需要的迭代停止条件。

论文的第三部分介绍了将BCS与SPL结合的框架:

3.1 BCS

BCS即图像分块压缩感知,将图像分成多个大小为B×B的图像块,设xj为每块的列向量表示,对每一个图像块采用观测矩阵ΦB来测量。则每个图像块所对应得到的观测向量为yj=ΦBxj,其中ΦB是MB×B2的正交测量矩阵,并且有MB=[M/N]B2。

使用分块压缩感知有以下几个好处:首先由于分块后观测矩阵ΦB的尺寸变小,降低了所需的存储空间;其次,在编码端不需要等到整幅图像都完成观测后再进行编码,能在图像块投影到观测矩阵后就进行编码传输;最后算法中初始化使用的x(0)是根据最小均方误差来计算的,分块后的图像由于观测矩阵尺寸变小了,所以计算复杂度随之降低,在算法中,我们选用图像分块的尺寸大小B为32。

3.2 SPL

PL迭代算法中结合维纳滤波器能消除由于分块压缩感知导致的重构图像中的块效应,论文中SPL的迭代过程如下所示:

其中维纳滤波器的窗口大小为3×3,在算法中的初始化和迭代停止条件如下图所示,下文会对其中的阈值继续进行讨论。

论文的第四部分主要介绍了稀疏基和阈值:

4.1 Transforms

在图像压缩感知中,DWT被广泛应用于将信号进行稀疏表示,但是离散小波变换缺少移不变特性和方向选择性。据此提出了两种方向变换:轮廓波变换(CT)以及复值离散小波变换(complex-valued DWTs),复值离散小波变化使用了二元树DWT, 称为双树复小波变换DDWT。

4.2 阈值

SPL中应用是是硬阈值方法,论文中提出了一种通用的门限方法,如下所示:

其中λ是控制收敛的常数因子,K是变换系数的数目,σ(i)是采用一个鲁邦的中值滤波器来估计的:

硬阈值本质上假定了系数之间是互相独立的,但对于所采用的方向变换,双变量收缩在变换系数和他们各自的父系数之间采用了统计依赖关系,能达到比硬阈值更好的效果,论文中所采用的方法如下图所示:

参考文献:

[1] Mun S,Fowler J E.Block compressed sensing of images using directional transforms[C]//Image Processing(ICIP),2009 IEEE International Conference on.IEEE,2009:3021-3024

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏梦里茶室

Object Detection · RCNN论文解读

转载请注明作者:梦里茶 Object Detection,顾名思义就是从图像中检测出目标对象,具体而言是找到对象的位置,常见的数据集是PASCAL VOC系列...

3577
来自专栏SIGAI学习与实践平台

【免费线上实践】动手训练模型系列:SVM径向基核函数的参数选择

径向基核函数(RBF)是最为常用的非线性分类核函数.而相比于线性核函数,工程项目中使用RBF需要花费更长时间进行调参。

3143
来自专栏Petrichor的专栏

深度学习: 目标检测算法 效果对比

使用selective search方法先产生region proposals,再使用浅层CNN网络进行特征提取,最后使用svm进行分类。这篇论文里提及的一个点...

7044
来自专栏ml

降维之pca算法

pca算法:  算法原理: pca利用的两个维度之间的关系和协方差成正比,协方差为0时,表示这两个维度无关,如果协方差越大这表明两个维度之间相关性越大,因而降维...

3436
来自专栏hadoop学习笔记

非局部神经网络,打造未来神经网络基本组件

将非局部计算作为获取长时记忆的通用模块,提高神经网络性能在深度神经网络中,获取长时记忆(long-range dependency)至关重要。对于序列数据(例如...

1400
来自专栏深度学习计算机视觉

计算机视觉中的物体检测方法

本文适合刚入门物体检测的人群学习,不涉及公式推理。 目录 *摘要 *相关物体检测数据集介绍 *现有的主流物体检测算法 *物体检测的难点与挑战 *相关术语介绍 *...

2974
来自专栏磐创AI技术团队的专栏

新手入门机器学习十大算法

【磐创AI导读】:对于想要了解机器学习的新手,本文为大家总结了数据科学家最经常使用的十大机器学习算法来帮助大家快速入门。如果喜欢我们的文章,欢迎点赞、评论、转发...

851
来自专栏xingoo, 一个梦想做发明家的程序员

吴恩达机器学习笔记 —— 5 多变量线性回归

有时候特征各个维度是不同规模的,比如房间的平米数和房间数,两个数量级相差很大。如果不丛任何处理,可能导致梯度优化时的震荡。

990
来自专栏AI研习社

一文带你了解 Faster R-CNN

Fast R-CNN 有两个网络:建议窗口网络(RPN)生成建议窗口并使用这些窗口检测物体。与Fast R-CNN 的主要区别在于后者使用选择性搜索来生成建议窗...

1403
来自专栏应用案例

机器学习三人行-手写数字识别实战

前面三个系列我们分别从机器学习入门,洞悉数据,已经数据预处理,回归建模等方面进行了系统的学习。 今天我们根据mnist手写数字的数据集来对0-9共10个数字进行...

2795

扫码关注云+社区

领取腾讯云代金券