在大数据时代 每家公司都要有大数据部门吗?

很多大数据创业公司提供的服务,似乎企业自己也能实现,那何不干脆自己做?结论也不能下得太武断。

如果这个问题换做是:在电气时代,每家公司都要有个发电厂吗?是不是会更好回答一些?

事实上每一种重大技术的出现,都会对产业产生大的变化。在蒸汽时代,采矿机采用蒸汽机后,会带来生产效率的极大提升,而轮船加上蒸汽机,再也不需要靠风才能航海了。在电气时代,电灯代替了蜡烛,电报代替了快马送信, 而报纸也被广播和电视所侵蚀。

可以说是现有产业加上新技术,形成了新产业。

我们回过头来看这两次工业革命,生产蒸汽机的企业只有少量几家,而发电的企业在美国也只有通用电气和西屋电气。并不是每家企业都要从事这些基础设施的研发和生产,更多的是对新技术加以应用,发挥新技术带来的价值。

在IT领域,软件刚出来时,可以说是计算和存储完全混杂在一起。有人尝试将计算硬件进行分离,歪打正着成就了 Intel。有人尝试将存储系统分离,因而有了 Oracle。

Intel 和 Oracle 固然伟大,但它们的价值更多的还在于有广大的企业采用了这些新的技术,在具体的行业中,产生了更大的价值。

同样,云计算这种理念固然是好,但如果每家企业都建立自己的云计算中心,从资金和人力投入上,一定是不划算的,更严重的问题是做不到最优。相反,有了 AWS 和阿里云这样的云计算提供商,让中小企业更便捷的进行创新应用。

回到题目中的问题,在大数据时代,每家公司都要有自己的大数据部门吗?结论也不能下的太武断。

早在2008年,云计算的概念刚刚兴起,百度内部出现了两拨势力。一拨要从零开始打造自己的大数据底层技术,把 MapReduce、GFS、BigTable 这些组件都要实现一遍,结果花了两三年时间,也没能稳定运行。

而另外一拨势力,直接采纳开源的 Hadoop 生态,很快在公司内应用起来。而我当时做的日志统计平台,也是采用了 Hadoop。但百度的数据规模毕竟太大了,所需的集群规模,开源版本根本撑不住,于是不得不改写 Hadoop,这样就和开源的版本渐行渐远,等到后来再也合不到一起了。

曾经有一年多的时间,我们部门新设计和实现和底层的存储及计算系统,结果发现开源的版本也差不多实现到了同样效果。虽然许多内部的人觉得我们怎么总重复造轮子,但我明白还是需求使然,你面临的需求相对领先,但也没有领先到像 Google 那样提早 5 年。

但对于小公司来说,则完全没必要从零开始做,还是要尽量用开源的产品。

整个 Hadoop 生态,要比我 2008 年刚用的时候,要成熟很多。那个时候我们去拿开源的版本,编译部署,一个新手可能两周都不一定能正常的运转。而现在下载一个 Cloudera 发行版,两个小时就可以正常跑任务了。

与此同时,又面临了新的问题,因为大数据平台牵涉到数据的采集、传输、建模存储、查询分析、可视化等多个环节,而开源领域只是一些组件,于是各家公司都在纷纷打造自己的大数据平台,这就像 Oracle 之前,各家都在打造自己的存储系统。这显然不是一件性价比高的事情。

有市场需求,就会有满足相应需求的公司诞生,于是就诞生了一堆提供大数据服务的公司。

由于这一新领域还处于早期,这些创业公司所能提供的服务并不会特别的完善,要么是以项目制的方式运转,要么是提供专门应用场景的服务。这样,对于一些企业来说,这些创业公司提供的服务,似乎自己也能实现,那何不干脆自己做?

这创业一年多以来,我看到了太多的公司在打造自己的数据平台,但做的还不够完善。不管是技术实力还是人力投入上,都有点力不从心。如果选用了这些第三方数据服务,那岂不饭碗被抢了?

可我要说的是,饭碗早晚都会被抢,只是时间早晚的问题。这里只需要问一个问题:我所做的数据平台,是不是其他公司也是类似的需求?如果是的话, 那肯定也有其他公司做着类似的事情,做的东西会大同小异。

那么,就会出现专门的公司,来解决这种通用的需求。因为这些公司专注于解决这一块问题,所以会更加专业,并且舍得投入。而对于需求公司来说, 除非自己转型去专门做大数据平台,不然在投入上,肯定不是一件性价比很高的事情。与其如此,不如及早侧重于自己的核心业务,关注应用需求本身。

那对于企业来说,在大数据时代,应该怎么做呢?我的建议是三点:

首先,要拥抱大数据技术。新的重大技术出现,都带有颠覆性。

一不小心,就会被革命。但也不是说企业已有的业务不用搞了,都来搞大数据吧。在大数据这件事上,还是要从需求出发,而不是从大数据出发。

有人会问我,我有了一些数据,给我讲讲怎么能发挥更大的价值。坦率来说,许多时候不了解业务场景,很难提出建设性的意见的。

相反,我们要先看在企业满足客户需求的时候,还有哪些重大问题没有解决好,如果采用了大数据技术,是不是可以更好的解决?如果有这样的点,那非常好,就勇于去尝试。如果没有,那就继续学习大数据的知识,再等待这样的场景出现。

其次,企业要有懂大数据的人。

这种人不一定是全职的,但至少是可以将企业的业务和大数据技术结合起来的人。这种人不一定对大数据技术本身很懂,但善于使用新技术。

如果企业现在还没有,并且还没招到。可以去培养一个头脑灵活,乐于学习新技术的人。如果抛开大数据系统的实现挑战,理解大数据的应用场景,那难度会降低不少。

最后,要善于利用第三方服务。

能用第三方服务解决的,就尽快去尝试。在竞争激烈的情况下,通过采用新技术,获得技术红利,跑的更快。就像爱迪生当年发明白炽灯后,那些更早将白炽灯用于工厂的企业家,更有可能提升工人的工作效率。

原文发布于微信公众号 - 智能算法(AI_Algorithm)

原文发表时间:2016-09-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

吴恩达推荐:谷歌、微软分羹 AI 云,四大原因凸显亚马逊危机

【新智元导读】AWS或许正在被 Microsoft Azure和谷歌云拉下王座,本文作者、ArchiTECHt创始人、编辑兼撰稿人Derrick Harris认...

28390
来自专栏CSDN技术头条

程序员编程生涯中常会犯的7个错误,你中了吗?

作为软件开发人员生活和职业指导,我需要和很多程序员交流,帮助他们提升职业生涯,加速成长。 时间久了,我发现很多程序员总是犯着相同的错误,前仆后继,却毫不自知。 ...

18890
来自专栏程序员互动联盟

程序员的追求是什么?

上周我收到三位Halmstad大学学生的电子邮件,他们正在做一个为期三月的项目,内容是关于程序员在工作中追求的是什么,以及企业如何吸引有才华的程序员。下面是我对...

33760
来自专栏CSDN技术头条

能带不同类型的团队,才能叫“敏捷教练”

敏捷教练是一个职业。Scrum Master 和敏捷教练是同一职业的不同阶段。当一个人能带好一个 Scrum 团队时,他是一个 Scrum Master。当他能...

22740
来自专栏大数据挖掘DT机器学习

车品觉:不懂商业就别谈数据分析

目前有些人关心行为数据,也有些人关心商业数据,但较少人把行为数据和商业数据联系起来看。大家往往只单纯看某一端数据。但是看数据走火入魔的人会明白,每个数据,就像散...

56870
来自专栏华章科技

未来10年将要诞生的21项新工作,看看你都能干嘛?

导读:基于今天可观察到的主流宏观经济、政治、人口、社会、文化、商业和技术趋势,我们来看看未来10年将出现的21个新工作岗位,这些岗位将成为未来工作的基石。

8930
来自专栏SAP最佳业务实践

从SAP最佳业务实践看企业管理(23)-CRM实施

ERP的领跑者谈CRM——SAP对实施CRM的经验之谈 一、SAP是如何实现CRM   市场竞争最直接的表现就是企业对客户的竞争,为满足客户要求,企业需要透过多...

37560
来自专栏九彩拼盘的叨叨叨

《如何高效地管理团队-年前管理者手册》 概要和感想

任向晖(明道创始人)在 20 多年的创业经历中,接触了大量的中小企业老板和他们的下属管理层,观察了那些管理者们各种各样的管理方式和沟通风格,也听闻了许多疑问、焦...

17210
来自专栏数据猿

在大数据时代,每家公司都要有大数据部门吗?

<数据猿导读> 在大数据时代,每家公司都要有自己的大数据部门吗? 结论也不能下的太武断。如果这个问题换做是:在电气时代,每家公司都要有个发电厂吗?是不是会更好回...

27670
来自专栏PPV课数据科学社区

【读书】在大数据时代,每家公司都要有大数据部门吗?

对于企业来说,在大数据时代,应该怎么做呢?我的建议是三点:首先,要拥抱大数据技术。其次,企业要有懂大数据的人。最后,要善于利用第三方服务。 ? 本文作者:桑文锋...

28850

扫码关注云+社区

领取腾讯云代金券