前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >各种排序算法总结

各种排序算法总结

作者头像
前朝楚水
发布2018-04-02 17:00:50
8520
发布2018-04-02 17:00:50
举报
文章被收录于专栏:互联网杂技

排序算法是最基本最常用的算法,不同的排序算法在不同的场景或应用中会有不同的表现,我们需要对各种排序算法熟练才能将它们应用到实际当中,才能更好地发挥它们的优势。今天,来总结下各种排序算法。

下面这个表格总结了各种排序算法的复杂度与稳定性:

各种排序算法复杂度比较.png

冒泡排序

冒泡排序可谓是最经典的排序算法了,它是基于比较的排序算法,时间复杂度为O(n^2),其优点是实现简单,n较小时性能较好。

  • 算法原理

相邻的数据进行两两比较,小数放在前面,大数放在后面,这样一趟下来,最小的数就被排在了第一位,第二趟也是如此,如此类推,直到所有的数据排序完成

  • c++代码实现

void bubble_sort(int arr[], int len) { for (int i = 0; i < len - 1; i++) { for (int j = len - 1; j >= i; j--) { if (arr[j] < arr[j - 1]) { int temp = arr[j]; arr[j] = arr[j - 1]; arr[j - 1] = temp; } } } }

选择排序

  • 算法原理

先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

  • c++代码实现

void select_sort(int arr[], int len) { for (int i = 0; i < len; i++) { int index = i; for (int j = i + 1; j < len; j++) { if (arr[j] < arr[index]) index = j; } if (index != i) { int temp = arr[i]; arr[i] = arr[index]; arr[index] = temp; } } }

插入排序

  • 算法原理

将数据分为两部分,有序部分与无序部分,一开始有序部分包含第1个元素,依次将无序的元素插入到有序部分,直到所有元素有序。插入排序又分为直接插入排序、二分插入排序、链表插入等,这里只讨论直接插入排序。它是稳定的排序算法,时间复杂度为O(n^2)

  • c++代码实现

void insert_sort(int arr[], int len) { for (int i = 1; i < len; i ++) { int j = i - 1; int k = arr[i]; while (j > -1 && k < arr[j] ) { arr[j + 1] = arr[j]; j --; } arr[j + 1] = k; } }

快速排序

  • 算法原理

快速排序是目前在实践中非常高效的一种排序算法,它不是稳定的排序算法,平均时间复杂度为O(nlogn),最差情况下复杂度为O(n^2)。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

  • c++代码实现

void quick_sort(int arr[], int left, int right) { if (left < right) { int i = left, j = right, target = arr[left]; while (i < j) { while (i < j && arr[j] > target) j--; if (i < j) arr[i++] = arr[j]; while (i < j && arr[i] < target) i++; if (i < j) arr[j] = arr[i]; } arr[i] = target; quick_sort(arr, left, i - 1); quick_sort(arr, i + 1, right); } }

归并排序

  • 算法原理

归并排序具体工作原理如下(假设序列共有n个元素):

  • 将序列每相邻两个数字进行归并操作(merge),形成floor(n/2)个序列,排序后每个序列包含两个元素
  • 将上述序列再次归并,形成floor(n/4)个序列,每个序列包含四个元素
  • 重复步骤2,直到所有元素排序完毕
  • 归并排序是稳定的排序算法,其时间复杂度为O(nlogn),如果是使用链表的实现的话,空间复杂度可以达到O(1),但如果是使用数组来存储数据的话,在归并的过程中,需要临时空间来存储归并好的数据,所以空间复杂度为O(n)

  • c++代码实现

void merge(int arr[], int temp_arr[], int start_index, int mid_index, int end_index) { int i = start_index, j = mid_index + 1; int k = 0; while (i < mid_index + 1 && j < end_index + 1) { if (arr[i] > arr[j]) temp_arr[k++] = arr[j++]; else temp_arr[k++] = arr[i++]; } while (i < mid_index + 1) { temp_arr[k++] = arr[i++]; } while (j < end_index + 1) temp_arr[k++] = arr[j++]; for (i = 0, j = start_index; j < end_index + 1; i ++, j ++) arr[j] = temp_arr[i]; } void merge_sort(int arr[], int temp_arr[], int start_index, int end_index) { if (start_index < end_index) { int mid_index = (start_index + end_index) / 2; merge_sort(arr, temp_arr, start_index, mid_index); merge_sort(arr, temp_arr, mid_index + 1, end_index); merge(arr, temp_arr, start_index, mid_index, end_index); } }

堆排序

二叉堆

二叉堆是完全二叉树或者近似完全二叉树,满足两个特性

  • 父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值
  • 每个结点的左子树和右子树都是一个二叉堆

当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。一般二叉树简称为堆。

堆的存储

一般都是数组来存储堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。存储结构如图所示:

堆结构.png

堆排序原理

  • 堆排序的时间复杂度为O(nlogn)
    • 算法原理(以最大堆为例)
    • 先将初始数据R[1..n]建成一个最大堆,此堆为初始的无序区
    • 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
    • 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。
    • 重复2、3步骤,直到无序区只有一个元素为止。
  • c++代码实现

/** * 将数组arr构建大根堆 * @param arr 待调整的数组 * @param i 待调整的数组元素的下标 * @param len 数组的长度 */ void heap_adjust(int arr[], int i, int len) { int child; int temp; for (; 2 * i + 1 < len; i = child) { child = 2 * i + 1; // 子结点的位置 = 2 * 父结点的位置 + 1 // 得到子结点中键值较大的结点 if (child < len - 1 && arr[child + 1] > arr[child]) child ++; // 如果较大的子结点大于父结点那么把较大的子结点往上移动,替换它的父结点 if (arr[i] < arr[child]) { temp = arr[i]; arr[i] = arr[child]; arr[child] = temp; } else break; } } /** * 堆排序算法 */ void heap_sort(int arr[], int len) { int i; // 调整序列的前半部分元素,调整完之后第一个元素是序列的最大的元素 for (int i = len / 2 - 1; i >= 0; i--) { heap_adjust(arr, i, len); } for (i = len - 1; i > 0; i--) { // 将第1个元素与当前最后一个元素交换,保证当前的最后一个位置的元素都是现在的这个序列中最大的 int temp = arr[0]; arr[0] = arr[i]; arr[i] = temp; // 不断缩小调整heap的范围,每一次调整完毕保证第一个元素是当前序列的最大值 heap_adjust(arr, 0, i); } }

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2016-05-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 交互设计前端开发与后端程序设计 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 冒泡排序
  • 选择排序
  • 插入排序
  • 快速排序
  • 归并排序
  • 堆排序
    • 二叉堆
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档