神经网络 之 线性单元

本文结构:

  1. 什么是线性单元
  2. 有什么用
  3. 代码实现

1. 什么是线性单元

线性单元和感知器的区别就是在激活函数:

感知器的 f 是阶越函数:

线性单元的激活函数是线性的:

所以线性模型的公式如下:

2. 有什么用

感知器存在一个问题,就是遇到线性不可分的数据时,就可能无法收敛,所以要使用一个可导的线性函数来替代阶跃函数,即线性单元,这样就会收敛到一个最佳的近似上。

3. 代码实现

1. 继承Perceptron,初始化线性单元

from perceptron import Perceptron
#定义激活函数f
f = lambda x: x
class LinearUnit(Perceptron):
    def __init__(self, input_num):
        '''初始化线性单元,设置输入参数的个数'''
        Perceptron.__init__(self, input_num, f)

2. 定义一个线性单元, 调用 train_linear_unit 进行训练

  • 打印训练获得的权重
  • 输入参数值 [3.4] 测试一下预测值
if __name__ == '__main__': 
    '''训练线性单元'''
    linear_unit = train_linear_unit()
    # 打印训练获得的权重
    print linear_unit
    # 测试
    print 'Work 3.4 years, monthly salary = %.2f' % linear_unit.predict([3.4])
    print 'Work 15 years, monthly salary = %.2f' % linear_unit.predict([15])
    print 'Work 1.5 years, monthly salary = %.2f' % linear_unit.predict([1.5])
    print 'Work 6.3 years, monthly salary = %.2f' % linear_unit.predict([6.3])
  • 其中训练的过程就是:
  • 获得训练数据,
  • 设定迭代次数,学习速率等参数
  • 再返回训练好的线性单元
def train_linear_unit():
    '''
    使用数据训练线性单元
    '''
    # 创建感知器,输入参数的特征数为1(工作年限)
    lu = LinearUnit(1)
    # 训练,迭代10轮, 学习速率为0.01
    input_vecs, labels = get_training_dataset()
    lu.train(input_vecs, labels, 10, 0.01)
    #返回训练好的线性单元
    return lu

完整代码

from perceptron import Perceptron
#定义激活函数f
f = lambda x: x
class LinearUnit(Perceptron):
    def __init__(self, input_num):
        '''初始化线性单元,设置输入参数的个数'''
        Perceptron.__init__(self, input_num, f)


def get_training_dataset():
    '''
    捏造5个人的收入数据
    '''
    # 构建训练数据
    # 输入向量列表,每一项是工作年限
    input_vecs = [[5], [3], [8], [1.4], [10.1]]
    # 期望的输出列表,月薪,注意要与输入一一对应
    labels = [5500, 2300, 7600, 1800, 11400]
    return input_vecs, labels    
def train_linear_unit():
    '''
    使用数据训练线性单元
    '''
    # 创建感知器,输入参数的特征数为1(工作年限)
    lu = LinearUnit(1)
    # 训练,迭代10轮, 学习速率为0.01
    input_vecs, labels = get_training_dataset()
    lu.train(input_vecs, labels, 10, 0.01)
    #返回训练好的线性单元
    return lu
if __name__ == '__main__': 
    '''训练线性单元'''
    linear_unit = train_linear_unit()
    # 打印训练获得的权重
    print linear_unit
    # 测试
    print 'Work 3.4 years, monthly salary = %.2f' % linear_unit.predict([3.4])
    print 'Work 15 years, monthly salary = %.2f' % linear_unit.predict([15])
    print 'Work 1.5 years, monthly salary = %.2f' % linear_unit.predict([1.5])
    print 'Work 6.3 years, monthly salary = %.2f' % linear_unit.predict([6.3])

学习资料: https://www.zybuluo.com/hanbingtao/note/448086

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏海天一树

决策树

决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件。如图所示,决策树从根节点开始延伸,经过不同的判断...

2872
来自专栏iOSDevLog

估计器接口小结摘自:《Python 机器学习基础教程》 第3章 无监督学习与预处理(三)

scikit-learn 中的所有算法——无论是预处理、监督学习还是无监督学习算法——都被实现为类。这些类在 scikit-learn 中叫作估计器(estim...

1532
来自专栏李智的专栏

Python针对图像的基础操作

5. 返回目录中所有JPG 图像的文件名列表,直方图均衡化,平均图像,主成分分析等

1642
来自专栏张俊红

决策树-CART算法

总第80篇 01|前言: 本篇接着上一篇决策树详解,CART是英文“classification and regression tree”的缩写,翻译过来是分...

3845
来自专栏简书专栏

深度学习问题1-5

参考链接:https://blog.csdn.net/colourful_sky/article/details/79164720

1093
来自专栏机器学习算法与Python学习

Python:numpy的总结(1)

1、multiply 例子: x1=[1,2,3];x2=[4,5,6] print multiply(x1,x2) 输出: [ 4 10 18] multi...

3664
来自专栏闪电gogogo的专栏

《统计学习方法》笔记二 感知机

感知机(perceptron)是二分类的线性分类模型,输入为实例的特征向量,输出为实例的类别,取±1。感知机对应与输入空间中将实例划分为正负两类的分离超平面,属...

792
来自专栏ATYUN订阅号

重新调整Keras中长短期记忆网络的输入数据

你可能很难理解如何为LSTM模型的输入准备序列数据。你可能经常会对如何定义LSTM模型的输入层感到困惑。也可能对如何将数字的1D或2D矩阵序列数据转换为LSTM...

2494
来自专栏用户2442861的专栏

python感知机实现

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/haluoluo211/article/d...

3124
来自专栏数值分析与有限元编程

可视化 | MATLAB划分均匀矩形网格

之前发过一个划分均匀三角形网格的例子。下面结合一个悬臂梁说说如何在规则区域划分均匀矩形网格。 ? 将一个矩形平面区域划分成相同大小的矩形。X方向等分nex,Y方...

5669

扫码关注云+社区

领取腾讯云代金券