模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似
YOLO 系列从 v1 一路进化到 v13,始终在追求更快、更准、更轻的目标检测模型。而刚刚发布的 YOLOv13,不仅性能全系领先,还带来了“超图”这个硬核概...
在人工智能蓬勃发展的今天,计算机视觉技术正以前所未有的速度改变着我们的世界。从手机解锁到疾病诊断,从自动驾驶到艺术创作,机器“看懂”图像的能力至关重要。卷积神经...
本文汇总了多篇围绕YOLOv12这一实时目标检测前沿模型的最新研究论文。内容涵盖其核心架构创新(如高效注意力机制、轻量化设计),在特定场景(水下探测、果园绿色水...
今天给大家推荐和导读《深度学习-基础与概念》这本书。首先还是看下下官方对这本书的一个简单说明和介绍。
在智慧交通的演进中,算法的实战能力需通过极端天气、高动态目标、微观标识识别的严苛场景验证。TuSimple、CULane、UA-DETRAC、CCPD四大支柱数...
在2025 Symposium on VLSI Technology and Circuits会议上,新加坡国立大学NUS、新加坡下一代混合微电子中...
本文分析 YOLO11 在车辆检测上的性能。相比前代(YOLOv8/v10),YOLO11 通过架构改进提升了速度、精度和在复杂环境(小目标、遮挡)下的鲁棒性。...
在无人机视觉领域,算法的鲁棒性需在动态视角、尺度变化、复杂背景的严苛环境下验证。UAVDT 与 VisDrone 作为全球公认的无人机视角双雄,以其大规模、多维...
本文介绍了复旦联合腾讯优图发布高精度多模态数据集Real-IAD D³,并基于此数据集提出了一种创新的多模态融合检测方法,数据集已被CVPR 2025收录,并开...
构建高效、智能、安全的现代电网,离不开人工智能视觉技术的深度赋能。无论是自动识别配电房仪表读数、精准检测输电线路上的致命异物,还是实时监控设备绝缘状态、评估潜在...
由于输电线上异物出现的频率较低,获取的样本数量有限。这些样本不足以训练神经网络,因此需要进行数据集增强。
在实时检测、复杂场景分析、零样本分割需求并存的2025年,YOLO-NAS、DETR、SAM三大架构各领风骚。本文深入剖析三者核心优势、典型短板与最佳适用场景,...
一本好的教材兼备两大特质——体量恢弘、思想深邃。由世界公认的机器学习专家Christopher M.Bishop耗时16年精心打磨而成的《深度学习:基础与概念》...
本文提出了一种使用搭载计算机视觉的智能无人机估算蓝莓产量的方法。系统利用两个YOLO模型:一个检测灌木丛,另一个检测浆果。它们协同工作,智能控制无人机位置和角度...
本文提出YOLO-FireAD火灾检测模型,其核心的注意力逆残差模块(AIR)和双池化模块(DPDF)有效增强关键特征并保留细节,在显著减少51.8%参数量的同...
最近摸鱼休息了很长一段时间,差不多该回来好好更新了,先从拖延很久的这个系列开始吧~
想象一个学生在不断学习:做题 → 对答案 → 总结错误 → 改进方法。神经网络的学习与此类似。
北京大学陈宝权教授团队联合港大等开发的 SLAM3R系统取得突破:首次仅用普通手机RGB视频,就能实时(20+FPS)生成高质量、高密度3D场景模型。 它颠覆传...
在传统的C和Java编程世界里,我们习惯了用确定性的思维去解决问题,if-else语句就是这种思维的典型体现。但随着AI的兴起,一种全新的“非确定性计算”概念闯...
神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向--深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深...