前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >SDN中”软件”如何定义”网络”

SDN中”软件”如何定义”网络”

作者头像
SDNLAB
发布2018-04-03 15:38:12
1.2K0
发布2018-04-03 15:38:12
举报
文章被收录于专栏:SDNLAB

SDN(Software Defined Network)软件定义网络,字面释义都说了是“软件”来定义“网络”,但有心之人会想:这个“软件”到底是如何定义了我们所熟知的“网络”?字字珠玑,今天就来扒一扒,这“软件”到底是如何定义这“网络”。

众所周知,SDN软件定义网络,核心思想就是所谓的“转发、控制分离”,正所谓一谈SDN必谈“转发、控制”,一传十十传百,口口相传。当我们这些产品经理到客户现场交流SDN时,或许客户也能娓娓道来“转发、控制、分离”。但事实是怎么样呢,不妨我们以SDN为题做个头脑风暴,看看谈到SDN我们都想到了哪些关键词,并以此来总结出SDN几大特征库。

SDN,也许你能想到这些:

归结起来是这样几大特征:

1) Controller控制器集中控制:集中式/分布式控制器无非是把原本网络设备从孤立的单点做了横向的扩张,将所有SDN化的网络设备统一被控制。这就好比将N台SDN小交换机“揉”成一台SDN大交换机,统一管理,统一配置。

2) 标准协议接口化:控制器与SDN设备之间的南向协议的标准化以及控制器北向API接口的标准化都是强调了SDN毕竟还是处理“网络”的工作,应用的事SDN“甭管”。可以类比到OSI七层模型,每层对应了每层的工作,彼此调用互不干涉。

3) 通用硬件:这里和NFV(Network Function Virtualization,网络功能虚拟化)没有关系。这里的SDN通用硬件指的是带有SDN处理芯片的网络设备或者是能实现SDN功能的网络设备。并非NFV所强调的x86取代ASIC的设备。

正如下图所示,把SDN抽象出来看,其实包括了这样五个部分:

1) SDN网络设备:网络设备(硬件网络设备或x86里面的软件网络设备,如vSR/vFW等)+SDN能力(可以是SDN芯片或开启SDN功能)

2) SDN控制器:能处理SDN功能的控制器,可以是软件方式或软件嵌入硬件的方式。常见的有:floodlight、POX、NOX、OpenDaylight、Ryu、NSX等

3) SDN APP:这更像是我们熟悉的网络上层功能,例如QOS、路由功能、Overlay功能等等。相比于传统网络,原本孤立的管理/配置如今被SDN统一化了,一个APP代表了整个SDN管理域内的所有此APP功能。好处就好比,网络出口要防DDOS攻击,调用了一个APP就能自动做黑洞引流操作;又好比,领导要开视频会议,调用一个QOS的APP就能全局做带宽质量保障;又例如,通过SDN负载均衡APP,可以实现根据不同业务/参数进行负载轮询。

4) 南向控制协议:这里场景的控制协议是Openflow,但绝非仅仅Openflow。可以实现控制功能的协议其实很多,除了最知名的Openflow以外,还有:Netconf、PCEP、LISP、MP-BGP、SNMP等等。

5) 北向API:此API的主要作用在于提供SDN控制器及其以下部分(南向控制协议、网络设备)能够作为网络驱动供上层应用调用。此上层应用可以是各种APP,同样也可以是Openstack、vCloud等云管理平台。

SDN抽象的模型

通常情况下,启用SDN的交换机可以分成两种模式:纯SDN交换机和混杂模式交换机。

1) 纯SDN交换机:交换机无脑工作,所有处理过程均依赖于Openflow或类似南向控制协议,主流的有:BGP/LISP/SNMP/NETCONF等。此时的交换机也叫做白盒交换机,其中交换机简化很多芯片功能,但增强了流表转发的功能,其中流表主要由ACL的TCAM芯片提供。只有这类TCAM能匹配SDN里面的十五元组,可以根据组特性进行转发。

2) 混杂模式交换机:顾名思义,混杂模式交换机就是带有OPENFLOW功能的传统交换机,可以根据需要将交换机的一部分转换成SDN,而其实质是传统交换机,有所有相关的转发、控制ASIC芯片。

Openflow标准定义了控制器与交换机之间的交互协议,以及一组交换机操作。这个控制器—交换机协议运行在安全传输层协议(TLS)或无保护TCP连接之上。Openflow使用TCP端口6633或6653。

每个流表中每个流条目包括三个部分:

(1) 匹配match—使用ingress port,packet header以及前一个flow table传递过来的metadata;

(2) 计数counter---对匹配成功的包进行计数;

(3) 操作instruction—修改action set或者流水线处理

交换机针对SDN有一个比较重要的消息类型:Packet-In,主要针对未知数据流无法命中流表的时候,作上送控制器的操作。

同样,SDN控制器也有一个比较重要的消息类型:Packet-Out,主要针对下游SDN被管理设备,用于控制器指定从交换机的特定端口发送数据包,或者用于转发通过Packet-in消息接收到的数据包。Packet-Out报文中包含明确的Action动作。

接下来,通过两个例子来展示“SDN新网络”如何利用“软件”解决传统网络中的问题。同样,可以帮助产品经理能够在跟客户交流SDN的过程中,更深入的阐述SDN的大致工作过程,以“软件定义”的角度来阐释传统网络中常见的拓扑发现、ARP通讯等问题。

A. SDN Controller通过Openflow和LLDP发现整网拓扑

整网拓扑如上图所示:

背景阐述:

① 所有交换机彼此互联

② 交换机通过带外方式(或网管网方式)连接Controller

③ 交换机均使用Openflow协议。Openflow使用TCP端口6633或6653作为接收的监听端口。目前最新Openflow协议为1.5.1,详见ONF的spec。(https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/Openflow/Openflow-switch-v1.5.1.pdf)

④ 无特殊Controller指定,各类型都OK

那对于传统交换机而已,正常情况他们是通过LLDP等类似的邻居发现协议发现彼此网络设备,形成整网拓扑。而在SDN环境中,设备是无脑的,此时需要借助Openflow和LLDP同时工作,来保障Controller环境下能够对全网进行拓扑发现。

工作流程介绍:

① 交换机连线至Controller,通过电信号,Controller发现有支持Openflow的SDN交换机接入,此时,Controller能够发现三台SDN交换机接入了。注意,此时三台设备之间的组网环境Controller是不清楚的。

② Controller通过packet-out报文,封装LLDP报文进Openflow,分别分发给每个交换机。此时的packet-out报文中含有动作:分发LLDP报文从交换机的每个端口发出去。

③ 此时交换机A根据Controller的动作指令,将LLDP报文从交换机所有接口发出去。交换机B和交换机C此时都能收到这个报文。

④ LLDP报文经过交换机之间的互联链路到达对端SDN交换机。而此时正因为交换机是SDN无脑交换机,他对于报文的处理都是上送Controller而非本地操作。则此时接受到LLDP的对端交换机会将LLDP报文再次封装,封装进packet-in,并上送至Controller。

⑤ 此时Controller收到对端SDN交换机封装的packet-in报文,报文里包含原本的LLDP报文。此时Controller就已经知道所有的拓扑连接关系了。

B. SDN控制器对于ARP报文的处理

背景阐述:

① 网络拓扑已发现

② 控制器采用ODL(OpenDayLight)

③ 本地主机H1(10.0.0.1)和对端主机H2(10.0.0.2)均连接于SDN交换机下面

④ 整个过程是H1请求H2的ARP,H2响应H1

整个解析过程

① H1去pingH2,即10.0.0.1去ping10.0.0.2。因为没有H2的MAC,此时需要做一次ARP解析。此时ARP请求(原本是广播)被SwitchA通过Openflow形式单播上送给Controller(packet-in报文)

② Controller收到H1的ARP请求,记录H1位于Switch A下游,且记录相关的位置信息。

③ 正因为Controller有所有交换机的拓扑及位置信息,此时Controller会给全网中每台SDN交换机都发送一个10.0.0.0/8网段的ARP请求消息,来请求10.0.0.2的MAC地址。但源IP并非10.0.0.1,而是Controller的网关地址,此处为10.0.0.254。此时报文均为packet-out,即通过Controller手工泛洪,但此泛洪是有选择性的,只针对同网段(10.0.0.0/8)

④ 所有交换机都能收到此ARP单播请求,而只有Switch B会做出回应,因为H2接在Switch B下游。此时通过packet-in,所有SDN交换机会将此ARP泛洪发送到同网段的端口。

⑤ H2收到此时的ARP请求,正常做出回应。

⑥ Switch B收到H2的ARP响应,无脑上送到Controller。Controller收到ARP响应,发现正是前面发出的ARP请求的响应报文。记录此时的H2位置信息及ARP信息。

⑦ Controller通过Openflow将ARP响应回应给Switch A,Switch A将报文回送给H1。

此时做个小结,Controller已经完整知道SwitchA/SwitchB/H1/H2的位置信息及MAC/ARP信息。Switch A/H1知道完整的ARP/MAC信息。而SwitchB也有H1/H2的完整IP。唯独H2此时只知道H1的IP,而不知道H1的MAC。

⑧ H1的整个ARP请求过程已经完成。接下来要输送ICMP请求报文。报文经由Switch A正常输送到H2(此时是实际转发流量,而且Switch A已有完整转发路径,不需要再上送Controller)

⑨ H2收到ICMP报文,想要回应,但是没有H1的MAC,需要再次做ARP请求。此时H2请求H1的MAC地址,报文被Switch B上送Controller,Controller已有H1的MAC,则Controller做出回应,将H1的MAC回应给H2。

⑩ H2收到ARP,则整个过程完整。回应ICMP报文。整个业务流打通。

可以看到,最关键的应该是第三步,即Controller发送伪装ARP报文给全局同网段交换机,以此来实现ARP广播的同样效果。但也正是这样一个看似合理的安全行为,带来了很多不安全的隐患。可以想象,Controller有几种方式可以获取终端主机的MAC情况:1.通过免费ARP的方式、2.定时申请下游终端的MAC方式,都可以保证对下游终端MAC的始终更新。

但同样,集中Controller的方式也带来了单点安全的风险考虑,一旦一台下游主机中毒,不断变化自己的MAC不断做出更新动作,此时会极大消耗Controller的资源,形成DOS攻击。同样,Controller的安全如果不是很坚固,则一旦被攻破,所有终端信息一览无余。

抛砖引玉,SDN的安全还有很多路要走。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2015-06-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 SDNLAB 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
负载均衡
负载均衡(Cloud Load Balancer,CLB)提供安全快捷的四七层流量分发服务,访问流量经由 CLB 可以自动分配到多台后端服务器上,扩展系统的服务能力并消除单点故障。轻松应对大流量访问场景。 网关负载均衡(Gateway Load Balancer,GWLB)是运行在网络层的负载均衡。通过 GWLB 可以帮助客户部署、扩展和管理第三方虚拟设备,操作简单,安全性强。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档