程序员必知的 Python 陷阱与缺陷列表

阅读字数:3754 | 10分钟阅读

我个人对陷阱的定义是这样的:代码看起来可以工作,但不是以你“想当然“”的方式。如果一段代码直接出错,抛出了异常,我不认为这是陷阱。比如,Python程序员应该都遇到过的“UnboundLocalError”, 示例:

>>> a=1
>>> def func():
...     a+=1
...     print a
...
>>> func()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in func
UnboundLocalError: local variable 'a' referenced before assignment

对于“UnboundLocalError”,还有更高级的版本:

import random
def func(ok):
    if ok:
        a = random.random()
    else:
        import random
        a = random.randint(1, 10)
    return a
func(True)# UnboundLocalError: local variable 'random' referenced before assignment

可能对于很多python新手来说,这个Error让人摸不着头脑。但我认为这不算陷阱,因为这段代码一定会报错,而不是默默的以错误的方式运行。不怕真小人,就怕伪君子。我认为缺陷就好比伪君子。

那么Python中哪些真正算得上陷阱呢?

第一:以mutable对象作为默认参数

这个估计是最广为人知的了,Python和其他很多语言一样,提供了默认参数,默认参数确实是个好东西,可以让函数调用者忽略一些细节(比如GUI编程,Tkinter,QT),对于lambda表达式也非常有用。但是如果使用了可变对象作为默认参数,那么事情就不那么愉快了。

>>> def f(lst = []):
...     lst.append(1)
...     return lst
...
>>> f()
[1]
>>> f()
[1, 1]

惊喜不惊喜?!究其原因,python中一切都是对象,函数也不列外,默认参数只是函数的一个属性。而默认参数在函数定义的时候已经求值了。

Default parameter values are evaluated when the function definition is executed.

stackoverflow上有一个更适当的例子来说明默认参数是在定义的时候求值,而不是调用的时候。

>>> import time
>>> def report(when=time.time()):
... return when
...
>>> report()
1500113234.487932
>>> report()
1500113234.487932

python docoment 给出了标准的解决办法:

  A way around this is to use None as the default, and explicitly test for it in the body of the function

>>> def report(when=None):
...  if when is None:
...  when = time.time()
... return when
...
>>> report()
1500113446.746997
>>> report()
1500113448.552873

第二: x += y vs x = x + y

一般来说,二者是等价的,至少看起来是等价的(这也是陷阱的定义 — 看起来都OK,但不一定正确)。

>>> x=1;x += 1;print x
2 
>>> x=1;x = x+1;print x
2
>>> x=[1];x+=[2];print x
[1, 2]
>>> x=[1];x=x+[2];print x
[1, 2]

呃,被光速打脸了?

>>> x=[1];print id(x);x=x+[2];print id(x) 
4357132800
4357132728
>>> x=[1];print id(x);x+=[2];print id(x)
4357132800
4357132800

前者x指向一个新的对象,后者x在原来的对象是修改,当然,那种效果是正确的取决于应用场景。至少,得知道,二者有时候并不一样。

第三,神奇的小括号–()

小括号(parenthese)在各种编程语言中都有广泛的应用,python中,小括号还能表示元组(tuple)这一数据类型, 元组是immutable的序列。

>>> a = (1, 2)
>>> type(a)
<type 'tuple'>
>>> type(())
<type 'tuple'>

但如果只有一个元素呢

>>> a=(1)
>>> type(a)
<type 'int'>

神奇不神奇,如果要表示只有一个元素的元组,正确的姿势是:

>>> a=(1)
>>> type(a)
<type 'int'>

第四:生成一个元素是列表的列表

这个有点像二维数组,当然生成一个元素是字典的列表也是可以的,更通俗的说,生成一个元素是可变对象的序列。

很简单嘛:

>>> a= [[]] * 10
>>> a
[[], [], [], [], [], [], [], [], [], []]
>>> a[0].append(10)
>>> a[0] 
[10]

看起来很不错,简单明了,but

>>> a[1]
[10]
>>> a
[[10], [10], [10], [10], [10], [10], [10], [10], [10], [10]]

我猜,这应该不是你预期的结果吧,究其原因,还是因为python中list是可变对象,上述的写法大家都指向的同一个可变对象,正确的姿势。

>>> a = [[] for _ in xrange(10)]
>>> a[0].append(10)
>>> a
[[10], [], [], [], [], [], [], [], [], []]

第五,在访问列表的时候,修改列表

列表(list)在python中使用非常广泛,当然经常会在访问列表的时候增加或者删除一些元素。比如,下面这个函数,试图删掉列表中为3的倍数的元素:

>>> def modify_lst(lst):
... for idx, elem in enumerate(lst):
... if elem % 3 == 0:
... del lst[idx]

测试一下,

>>> lst = [1,2,3,4,5,6]
>>> modify_lst(lst)
>>> lst
[1, 2, 4, 5]

好像没什么错,不过这只是运气好

>>> lst = [1,2,3,6,5,4]
>>> modify_lst(lst)
>>> lst
[1, 2, 6, 5, 4]

上面的例子中,6这个元素就没有被删除。如果在modify_lst函数中print idx, item就可以发现端倪:lst在变短,但idx是递增的,所以在上面出错的例子中,当3被删除之后,6变成了lst的第2个元素(从0开始)。在C++中,如果遍历容器的时候用迭代器删除元素,也会有同样的问题。

如果逻辑比较简单,使用list comprehension是不错的注意

第六,闭包与lambda

这个也是老生长谈的例子,在其他语言也有类似的情况。先看一个例子:

>>> def create_multipliers():
...  return [lambda x:i*x for i in range(5)]
...
>>> for multiplier in create_multipliers():
... print multiplier(2)
...

create_multipliers函数的返回值时一个列表,列表的每一个元素都是一个函数 -- 将输入参数x乘以一个倍数i的函数。预期的结果时0,2,4,6,8. 但结果是5个8,意外不意外。

由于出现这个陷阱的时候经常使用了lambda,所以可能会认为是lambda的问题,但lambda表示不愿意背这个锅。问题的本质在与python中的属性查找规则,LEGB(local,enclousing,global,bulitin),在上面的例子中,i就是在闭包作用域(enclousing),而Python的闭包是 迟绑定 , 这意味着闭包中用到的变量的值,是在内部函数被调用时查询得到的。

解决办法也很简单,那就是变闭包作用域为局部作用域。

>>> def create_multipliers():
... return [lambda x, i = i:i*x for i in range(5)]
...

第七,定义__del__

大多数计算机专业的同学可能都是先学的C、C++,构造、析构函数的概念应该都非常熟。于是,当切换到python的时候,自然也想知道有没有相应的函数。比如,在C++中非常有名的RAII,即通过构造、析构来管理资源(如内存、文件描述符)的声明周期。那在python中要达到同样的效果怎么做呢,即需要找到一个对象在销毁的时候一定会调用的函数,于是发现了__init__, __del__函数,可能简单写了两个例子发现确实也能工作。但事实上可能掉进了一个陷阱,在python documnet是有描述的:

  Circular references which are garbage are detected when the option cycle detector is enabled (it’s on by default), but can only be cleaned up if there are no Python-level __del__() methods involved.

简单来说,如果在循环引用中的对象定义了__del__,那么python gc不能进行回收,因此,存在内存泄漏的风险

第八,不同的姿势import同一个module

示例在stackoverflow的例子上稍作修改,假设现在有一个package叫mypackage,里面包含三个python文件:mymodule.py, main.py, __init__.py。mymodule.py代码如下:

l = []
class A(object):
    pass

main.py代码如下:

def add(x):
    from mypackage import mymodule
    mymodule.l.append(x)
    print "updated list",mymodule.l, id(mymodule)
def get():
    import mymodule
    print 'module in get', id(mymodule)
    return mymodule.l
if __name__ == '__main__':
    import sys
    sys.path.append('../')
    add(1)
    
    ret = get()
    print "lets check", ret

运行python main.py,结果如下:

updated list [1] 4406700752
module in get 4406700920
lets check []

从运行结果可以看到,在add 和 get函数中import的mymodule不是同一个module,ID不同。当然,在python2.7.10中,需要main.py的第13行才能出现这样的效果。你可能会问,谁会写出第13行这样的代码呢?事实上,在很多项目中,为了import的时候方便,会往sys.path加入一堆路径。那么在项目中,大家同意一种import方式就非常有必要了

第九,python升级

python3.x并不向后兼容,所以如果从2.x升级到3.x的时候得小心了,下面列举两点:

在python2.7中,range的返回值是一个列表;而在python3.x中,返回的是一个range对象。

map()、filter()、 dict.items()在python2.7返回列表,而在3.x中返回迭代器。当然迭代器大多数都是比较好的选择,更加pythonic,但是也有缺点,就是只能遍历一次。在instagram的分享中,也提到因为这个导致的一个坑爹的bug。

第十,gil

以GIL结尾,因为gil是Python中大家公认的缺陷!

从其他语言过来的同学可能看到python用threading模块,拿过来就用,结果发现效果不对啊,然后就会喷,什么鬼。

总结

毫无疑问的说,python是非常容易上手,也非常强大的一门语言。python非常灵活,可定制化很强。同时,也存在一些陷阱,搞清楚这些陷阱能够更好的掌握、使用这么语言。本文列举了一些python中的一些缺陷,这是一份不完全列表,欢迎大家补充。

原文发布于微信公众号 - IT大咖说(itdakashuo)

原文发表时间:2018-03-10

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏我是业余自学C/C++的

各种编码

2333
来自专栏Java帮帮-微信公众号-技术文章全总结

【Java提高十二】hashCode()equals()

hashCode的作用 要想了解一个方法的内在原理,我们首先需要明白它是干什么的,也就是这个方法的作用。在讲解数组时,我们提到数组是java中效率最高的数据结...

2694
来自专栏xingoo, 一个梦想做发明家的程序员

《JavaScript语言精粹》—— 读书总结

话说这本书还是同学的推荐才读的,之前感觉这本书太薄了,不值得看,没想到小身材有大智慧,书中的内容总结的还是很到位的!所以就把最后几章,精华的部分整理整理。 优...

2669
来自专栏java一日一条

java中i=i++问题分析

程序的执行顺序是这样的:因为++在后面,所以先使用i,“使用”的含义就是i++这个表达式的值是0,但是并没有做赋值操作,它在整个语句的最后才做赋值,也就是说在做...

503
来自专栏程序员互动联盟

【C语言系列】C语言概念--基本数据类型简介

1.概述   C 语言包含的数据类型如下图所示: ? 2.各种数据类型介绍 2.1整型   整形包括短整型、整形和长整形。 2.1.1短整形   short ...

4078
来自专栏贺贺的前端工程师之路

正则表达式 - 学习1

开发项目的过程中,用了很多的正则表达式,可是每一次都不是自己写的,遇到正则表达式的地方,要么去求助度娘,要么就是组长给写好的,我直接贴过来然后用的。感觉真是有一...

803
来自专栏喵了个咪的博客空间

zephir-(6)运算符

#zephir-运算符# ? ##前言## 先在这里感谢各位zephir开源技术提供者 了解的动态变量和静态变量之后我们今天来了解一下在编码工作中至关重要的运算...

3629
来自专栏日常学python

python中一切皆对象

众所周知python是一款面向对象语言,在python语言中,可以说python的一切皆对象是不会错的。如果你学过java的话,你也会知道java也是一款面向对...

970
来自专栏java一日一条

java中i=i++问题分析

程序的执行顺序是这样的:因为++在后面,所以先使用i,“使用”的含义就是i++这个表达式的值是0,但是并没有做赋值操作,它在整个语句的最后才做赋值,也就是说在做...

661
来自专栏PPV课数据科学社区

【学习】数据分析师的Python日记-第1天:谁来给我讲讲Python?

今天带来的是PYTHON,这是一篇非常有意思的文章。希望对大家有帮助。 ---- ---- 导语:或许是网上嘈嘈杂杂的关于大数据、互联网的新形势争论,或许是招聘...

2069

扫码关注云+社区