前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基数排序与桶排序,计数排序【详解】

基数排序与桶排序,计数排序【详解】

作者头像
Angel_Kitty
发布2018-04-09 10:47:30
1K0
发布2018-04-09 10:47:30
举报
文章被收录于专栏:小樱的经验随笔

桶排序简单入门篇^-^

在我们生活的这个世界中到处都是被排序过的东东。站队的时候会按照身高排序,考试的名次需要按照分数排序,网上购物的时候会按照价格排序,电子邮箱中的邮件按照时间排序……总之很多东东都需要排序,可以说排序是无处不在。现在我们举个具体的例子来介绍一下排序算法。

首先出场的是我们的主人公小哼,上面这个可爱的娃就是啦。期末考试完了老师要将同学们的分数按照从高到低排序。小哼的班上只有5个同学,这5个同学分别考了5分、3分、5分、2分和8分,哎,考得真是惨不忍睹(满分是10分)。接下来将分数进行从大到小排序,排序后是8 5 5 3 2。你有没有什么好方法编写一段程序,让计算机随机读入5个数然后将这5个数从大到小输出?请先想一想,至少想15分钟再往下看吧(*^__^*)。

我们这里只需借助一个一维数组就可以解决这个问题。请确定你真的仔细想过再往下看哦。

首先我们需要申请一个大小为11的数组int a[11]。OK,现在你已经有了11个变量,编号从a[0]~a[10]。刚开始的时候,我们将a[0]~a[10]都初始化为0,表示这些分数还都没有人得过。例如a[0]等于0就表示目前还没有人得过0分,同理a[1]等于0就表示目前还没有人得过1分……a[10]等于0就表示目前还没有人得过10分。

下面开始处理每一个人的分数,第一个人的分数是5分,我们就将相对应的a[5]的值在原来的基础增加1,即将a[5]的值从0改为1,表示5分出现过了一次。

第二个人的分数是3分,我们就把相对应的a[3]的值在原来的基础上增加1,即将a[3]的值从0改为1,表示3分出现过了一次。

注意啦!第三个人的分数也是5分,所以a[5]的值需要在此基础上再增加1,即将a[5]的值从1改为2,表示5分出现过了两次。

按照刚才的方法处理第四个和第五个人的分数。最终结果就是下面这个图啦。

你发现没有,a[0]~a[10]中的数值其实就是0分到10分每个分数出现的次数。接下来,我们只需要将出现过的分数打印出来就可以了,出现几次就打印几次,具体如下。

a[0]为0,表示“0”没有出现过,不打印。

a[1]为0,表示“1”没有出现过,不打印。

a[2]为1,表示“2”出现过1次,打印2。

a[3]为1,表示“3”出现过1次,打印3。

a[4]为0,表示“4”没有出现过,不打印。

a[5]为2,表示“5”出现过2次,打印5 5。

a[6]为0,表示“6”没有出现过,不打印。

a[7]为0,表示“7”没有出现过,不打印。

a[8]为1,表示“8”出现过1次,打印8。

a[9]为0,表示“9”没有出现过,不打印。

a[10]为0,表示“10”没有出现过,不打印。

最终屏幕输出“2 3 5 5 8”,完整的代码如下。

代码语言:javascript
复制
 1     #include <stdio.h> 
 2     int main()  
 3     {  
 4         int a[11],i,j,t;  
 5         for(i=0;i<=10;i++)  
 6             a[i]=0;  //初始化为0  
 7           
 8         for(i=1;i<=5;i++)  //循环读入5个数  
 9         {  
10             scanf("%d",&t);  //把每一个数读到变量t中  
11             a[t]++;  //进行计数  
12         }  
13      
14         for(i=0;i<=10;i++)  //依次判断a[0]~a[10]  
15             for(j=1;j<=a[i];j++)  //出现了几次就打印几次  
16                 printf("%d ",i);  
17      
18         getchar();getchar();   
19         //这里的getchar();用来暂停程序,以便查看程序输出的内容  
20         //也可以用system("pause");等来代替  
21         return 0;  
22     } 

输入数据为:

5 3 5 2 8 

仔细观察的同学会发现,刚才实现的是从小到大排序。但是我们要求是从大到小排序,这该怎么办呢?还是先自己想一想再往下看哦。

其实很简单。只需要将for(i=0;i<=10;i++)改为for(i=10;i>=0;i--)就OK啦,快去试一试吧。

这种排序方法我们暂且叫它“桶排序”。因为其实真正的桶排序要比这个复杂一些,以后再详细讨论,目前此算法已经能够满足我们的需求了。

这个算法就好比有11个桶,编号从0~10。每出现一个数,就在对应编号的桶中放一个小旗子,最后只要数数每个桶中有几个小旗子就OK了。例如2号桶中有1个小旗子,表示2出现了一次;3号桶中有1个小旗子,表示3出现了一次;5号桶中有2个小旗子,表示5出现了两次;8号桶中有1个小旗子,表示8出现了一次。

现在你可以尝试一下输入n个0~1000之间的整数,将它们从大到小排序。提醒一下,如果需要对数据范围在0~1000的整数进行排序,我们需要1001个桶,来表示0~1000之间每一个数出现的次数,这一点一定要注意。另外,此处的每一个桶的作用其实就是“标记”每个数出现的次数,因此我喜欢将之前的数组a换个更贴切的名字book(book这个单词有记录、标记的意思),代码实现如下。

代码语言:javascript
复制
 1     #include <stdio.h> 
 2      
 3     int main()  
 4     {  
 5         int book[1001],i,j,t,n;  
 6         for(i=0;i<=1000;i++)  
 7             book[i]=0;   
 8         scanf("%d",&n);//输入一个数n,表示接下来有n个数  
 9         for(i=1;i<=n;i++)//循环读入n个数,并进行桶排序  
10         {  
11             scanf("%d",&t);  //把每一个数读到变量t中  
12             book[t]++;  //进行计数,对编号为t的桶放一个小旗子  
13         }  
14         for(i=1000;i>=0;i--)  //依次判断编号1000~0的桶  
15             for(j=1;j<=book[i];j++)  //出现了几次就将桶的编号打印几次  
16                  printf("%d ",i);  
17      
18         getchar();getchar();  
19         return 0;  
20     } 

可以输入以下数据进行验证。

10  

8 100 50 22 15 6 1 1000 999 0 

运行结果是:

1000 999 100 50 22 15 8 6 1 0 

最后来说下时间复杂度的问题。代码中第6行的循环一共循环了m次(m为桶的个数),第9行的代码循环了n次(n为待排序数的个数),第14行和第15行一共循环了m+n次。所以整个排序算法一共执行了m+n+m+n次。我们用大写字母O来表示时间复杂度,因此该算法的时间复杂度是O(m+n+m+n)即O(2*(m+n))。我们在说时间复杂度的时候可以忽略较小的常数,最终桶排序的时间复杂度为O(m+n)。还有一点,在表示时间复杂度的时候,n和m通常用大写字母即O(M+N)。

这是一个非常快的排序算法。桶排序从1956年就开始被使用,该算法的基本思想是由E.J. Issac和R.C. Singleton提出来的。之前我说过,其实这并不是真正的桶排序算法,真正的桶排序算法要比这个更加复杂!

下面具体来说说基数排序和桶排序吧!

基数排序

基本思想

不进行关键字的比较,而是利用”分配”和”收集”。

PS:以十进制为例,基数指的是数的位,如个位,十位百位等。而以十六进制为例,0xB2,就有两个radices(radix的复数)。

Least significant digit(LSD)

短的关键字被认为是小的,排在前面,然后相同长度的关键字再按照词典顺序或者数字大小等进行排序。比如1,2,3,4,5,6,7,8,9,10,11或者”b, c, d, e, f, g, h, i, j, ba” 。

Most significance digit(MSD)

直接按照字典的顺序进行排序,对于字符串、单词或者是长度固定的整数排序比较合适。比如:1, 10, 2, 3, 4, 5, 6, 7, 8, 9和 “b, ba, c, d, e, f, g, h, i, j”。

基数排序图示

从图示中可以看出基数排序(LSD)的基本流程为如下节。

基数排序流程

将根据整数的最右边数字将其扔进相应的0~9号的篮子里,对于相同的数字要保持其原来的相对顺序(确保排序算法的稳定性),然后将篮子里的数如图所示的串起来,然后再进行第二趟的收集(按照第二位的数字进行收集),就这样不断的反复,当没有更多的位时,串起来的数字就是排好序的数字。

算法分析

空间

采用顺序分配,显然不合适。由于每个口袋都有可能存放所有的待排序的整数。所以,额外空间的需求为10n,太大了。采用链接分配是合理的。额外空间的需求为n,通常再增加指向每个口袋的首尾指针就可以了。在一般情况下,设每个键字的取值范围为d, 首尾指针共计2×radix个,总的空间为O(n+2×radix)

时间

上图示中每个数计有2 位,因此执行2 次分配和收集就可以了。在一般情况下,每个结点有d 位关键字,必须执行d 次分配和收集操作。

  • 每次分配的代价:O(n)
  • 每次收集的代价:O(radix)
  • 总的代价为:O(d×(n+radix))

算法的c++ plus plus实现

基于LSD的基数排序算法:

代码语言:javascript
复制
 1 #include <iostream>
 2 
 3 using namespace std;
 4 const int MAX = 10;
 5 
 6 void print(int *a,int sz) {               
 7     for(int i = 0; i < sz; i++)
 8         cout << a[i] << " ";
 9     cout << endl;
10 }
11 
12 void RadixSortLSD(int *a, int arraySize)
13 {
14     int i, bucket[MAX], maxVal = 0, digitPosition =1 ;
15     for(i = 0; i < arraySize; i++) {
16         if(a[i] > maxVal) maxVal = a[i];
17     }
18 
19     int pass = 1;  // used to show the progress
20     /* maxVal: this variable decide the while-loop count 
21                if maxVal is 3 digits, then we loop through 3 times */
22     while(maxVal/digitPosition > 0) {
23         /* reset counter */
24         int digitCount[10] = {0};
25 
26         /* count pos-th digits (keys) */
27         for(i = 0; i < arraySize; i++)
28             digitCount[a[i]/digitPosition%10]++;
29 
30         /* accumulated count */
31         for(i = 1; i < 10; i++)
32             digitCount[i] += digitCount[i-1];
33 
34         /* To keep the order, start from back side */
35         for(i = arraySize - 1; i >= 0; i--)
36             bucket[--digitCount[a[i]/digitPosition%10]] = a[i];
37 
38         /* rearrange the original array using elements in the bucket */
39         for(i = 0; i < arraySize; i++)
40             a[i] = bucket[i];
41 
42         /* at this point, a array is sorted by digitPosition-th digit */
43         cout << "pass #" << pass++ << ": ";
44         print(a,arraySize);
45 
46         /* move up the digit position */
47         digitPosition *= 10;
48     }   
49  }
50 
51 int main()
52 {
53     int a[] = {170, 45, 75, 90, 2, 24, 802, 66};
54     const size_t sz = sizeof(a)/sizeof(a[0]);
55 
56     cout << "pass #0: ";
57     print(a,sz);
58     RadixSortLSD(&a[0],sz);
59     return 0;
60 }

输出为:

代码语言:javascript
复制
1 pass #0: 170 45 75 90 2 24 802 66 
2 pass #1: 170 90 2 802 24 45 75 66 
3 pass #2: 2 802 24 45 66 170 75 90 
4 pass #3: 2 24 45 66 75 90 170 802 

首先统计10个篮子(或口袋)中各有多少个数字,然后从0~9数字的频次分布(而不是频次密度,有一个累加的过程),以确定“收集”整数时的位置下标所在。同时为了保证排序算法稳定,相同的数字保持原来相对位置不变,对原始数据表倒序遍历,逐个构成收集后的数据表。例如,上图所示,对于数字66,其所对应的频次分布为8,也就是应当排在第8位,在数组中下标应该为7。而如果对于数字2和802,对应的频次分布为4,那么对于数据表从后往前遍历的话,对应802的下标为3,而2的下标2,这样实际上就保证了排序算法的稳定性。 桶排序(bucket sort) 基本思想 桶排序的基本思想是将一个数据表分割成许多buckets,然后每个bucket各自排序,或用不同的排序算法,或者递归的使用bucket sort算法。也是典型的divide-and-conquer分而治之的策略。它是一个分布式的排序,介于MSD基数排序和LSD基数排序之间。 基本流程 建立一堆buckets; 遍历原始数组,并将数据放入到各自的buckets当中; 对非空的buckets进行排序; 按照顺序遍历这些buckets并放回到原始数组中即可构成排序后的数组。 图示

算法的c++ plus plus描述 1 #include <iostream> 2 #include <iomanip> 3 using namespace std; 4 5 #define NARRAY 8 /* array size */ 6 #define NBUCKET 5 /* bucket size */ 7 #define INTERVAL 10 /* bucket range */ 8 9 struct Node 10 { 11 int data; 12 struct Node *next; 13 }; 14 15 void BucketSort(int arr[]); 16 struct Node *InsertionSort(struct Node *list); 17 void print(int arr[]); 18 void printBuckets(struct Node *list); 19 int getBucketIndex(int value); 20 21 void BucketSort(int arr[]) 22 { 23 int i,j; 24 struct Node **buckets; 25 26 /* allocate memory for array of pointers to the buckets */ 27 buckets = (struct Node **)malloc(sizeof(struct Node*) * NBUCKET); 28 29 /* initialize pointers to the buckets */ 30 for(i = 0; i < NBUCKET;++i) { 31 buckets[i] = NULL; 32 } 33 34 /* put items into the buckets */ 35 for(i = 0; i < NARRAY; ++i) { 36 struct Node *current; 37 int pos = getBucketIndex(arr[i]); 38 current = (struct Node *) malloc(sizeof(struct Node)); 39 current->data = arr[i]; 40 current->next = buckets[pos]; 41 buckets[pos] = current; 42 } 43 44 /* check what's in each bucket */ 45 for(i = 0; i < NBUCKET; i++) { 46 cout << "Bucket[" << i << "] : "; 47 printBuckets(buckets[i]); 48 cout << endl; 49 } 50 51 /* sorting bucket using Insertion Sort */ 52 for(i = 0; i < NBUCKET; ++i) { 53 buckets[i] = InsertionSort(buckets[i]); 54 } 55 56 /* check what's in each bucket */ 57 cout << "-------------" << endl; 58 cout << "Bucktets after sorted" << endl; 59 for(i = 0; i < NBUCKET; i++) { 60 cout << "Bucket[" << i << "] : "; 61 printBuckets(buckets[i]); 62 cout << endl; 63 } 64 65 /* put items back to original array */ 66 for(j =0, i = 0; i < NBUCKET; ++i) { 67 struct Node *node; 68 node = buckets[i]; 69 while(node) { 70 arr[j++] = node->data; 71 node = node->next; 72 } 73 } 74 75 /* free memory */ 76 for(i = 0; i < NBUCKET;++i) { 77 struct Node *node; 78 node = buckets[i]; 79 while(node) { 80 struct Node *tmp; 81 tmp = node; 82 node = node->next; 83 free(tmp); 84 } 85 } 86 free(buckets); 87 return; 88 } 89 90 /* Insertion Sort */ 91 struct Node *InsertionSort(struct Node *list) 92 { 93 struct Node *k,*nodeList; 94 /* need at least two items to sort */ 95 if(list == 0 || list->next == 0) { 96 return list; 97 } 98 99 nodeList = list; 100 k = list->next; 101 nodeList->next = 0; /* 1st node is new list */ 102 while(k != 0) { 103 struct Node *ptr; 104 /* check if insert before first */ 105 if(nodeList->data > k->data) { 106 struct Node *tmp; 107 tmp = k; 108 k = k->next; 109 tmp->next = nodeList; 110 nodeList = tmp; 111 continue; 112 } 113 114 for(ptr = nodeList; ptr->next != 0; ptr = ptr->next) { 115 if(ptr->next->data > k->data) break; 116 } 117 118 if(ptr->next!=0){ 119 struct Node *tmp; 120 tmp = k; 121 k = k->next; 122 tmp->next = ptr->next; 123 ptr->next = tmp; 124 continue; 125 } 126 else{ 127 ptr->next = k; 128 k = k->next; 129 ptr->next->next = 0; 130 continue; 131 } 132 } 133 return nodeList; 134 } 135 136 int getBucketIndex(int value) 137 { 138 return value/INTERVAL; 139 } 140 141 void print(int ar[]) 142 { 143 int i; 144 for(i = 0; i < NARRAY; ++i) { 145 cout << setw(3) << ar[i]; 146 } 147 cout << endl; 148 } 149 150 void printBuckets(struct Node *list) 151 { 152 struct Node *cur = list; 153 while(cur) { 154 cout << setw(3) << cur->data; 155 cur = cur->next; 156 } 157 } 158 159 int main(void) 160 { 161 int array[NARRAY] = {29,25,3,49,9,37,21,43}; 162 163 cout << "Initial array" << endl; 164 print(array); 165 cout << "-------------" << endl; 166 167 BucketSort(array); 168 cout << "-------------" << endl; 169 cout << "Sorted array" << endl; 170 print(array); 171 return 0; 172 } 输出为: 1 Initial array 2 29 25 3 49 9 37 21 43 3 ------------- 4 Bucket[0] : 9 3 5 Bucket[1] : 6 Bucket[2] : 21 25 29 7 Bucket[3] : 37 8 Bucket[4] : 43 49 9 ------------- 10 Bucktets after sorted 11 Bucket[0] : 3 9 12 Bucket[1] : 13 Bucket[2] : 21 25 29 14 Bucket[3] : 37 15 Bucket[4] : 43 49 16 ------------- 17 Sorted array 18 3 9 21 25 29 37 43 49 虽然程序中的bucket采用链表结构以充分利用空间资源,而且bucket的构造也很巧妙,做的数据结构类似于栈链表的形式,插入都是插到顶部,所以后遍历的数据总是会在上面,因此从放入bucket之后的输出可以看出,跟图示进行对比,发现确实跟原来的原始相对顺序相反。 计数排序(counting sort) 目前介绍的利用比较元素进行排序的方法对数据表长度为n的数据表进行排序时间复杂度不可能低于O(nlogn)。但是如果知道了一些数据表的信息,那么就可以实现更为独特的排序方式,甚至是可以达到线性时间的排序。 基本思想 当数据表长度为n,已知数据表中数据的范围有限,比如在范围0−k之间,而k又比n小许多,这样可以通过统计每一个范围点上的数据频次来实现计数排序。 基本操作 根据获得的数据表的范围,分割成不同的buckets,然后直接统计数据在buckets上的频次,然后顺序遍历buckets就可以得到已经排好序的数据表。 算法的c++ plus plus实现 1 #include <iostream> 2 3 using namespace std; 4 5 void print(int a[], int sz) { 6 for (int i = 0; i < sz; i++ ) cout << a[i] << " "; 7 cout << endl; 8 } 9 10 void CountingSort(int arr[], int sz) { 11 int i, j, k; 12 int idx = 0; 13 int min, max; 14 15 min = max = arr[0]; 16 for(i = 1; i < sz; i++) { 17 min = (arr[i] < min) ? arr[i] : min; 18 max = (arr[i] > max) ? arr[i] : max; 19 } 20 21 k = max - min + 1; 22 /* creates k buckets */ 23 int *B = new int [k]; 24 for(i = 0; i < k; i++) B[i] = 0; 25 26 for(i = 0; i < sz; i++) B[arr[i] - min]++; 27 for(i = min; i <= max; i++) 28 for(j = 0; j < B[i - min]; j++) arr[idx++] = i; 29 30 print(arr,sz); 31 32 delete [] B; 33 } 34 35 int main() 36 { 37 int a[] = {5,9,3,9,10,9,2,4,13,10}; 38 const size_t sz = sizeof(a)/sizeof(a[0]); 39 print(a,sz); 40 cout << "----------------------\n" ; 41 CountingSort(a, sz); 42 } 输出为: 1 5 9 3 9 10 9 2 4 13 10 2 ---------------------- 3 2 3 4 5 9 9 9 10 10 13 计算排序构造了k个buckets来统计数据频次,共需要两趟来实现排序,第一趟增量计数进行统计,第二趟将计数统计的对应的数重写入原始数据表中。 因为这种排序没有采用比较,所以突破了时间复杂度O(nlogn)的上限,但是counting sort又不像是一种排序,因为在复杂数据结构中,它不能实现同结构体中排序码的排序来对结构体进行排序。也就不要提稳定与否了。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-06-02 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 桶排序简单入门篇^-^
    • 基数排序
      • 基本思想
      • 基数排序图示
      • 基数排序流程
      • 算法分析
      • 算法的c++ plus plus实现
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档