前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【GAN货】生成对抗网络知识资料全集(论文/代码/教程/视频/文章等)

【GAN货】生成对抗网络知识资料全集(论文/代码/教程/视频/文章等)

作者头像
WZEARW
发布2018-04-09 14:55:48
1.5K0
发布2018-04-09 14:55:48
举报
文章被收录于专栏:专知

【导读】当地时间 10月 22 日到10月29日,两年一度的计算机视觉国际顶级会议 International Conference on Computer Vision(ICCV 2017)在意大利威尼斯开幕。Google Brain 研究科学家 Ian Goodfellow 在会上作为主题为《生成对抗网络(Generative Adversarial Networks)》的Tutorial 最新演讲, 介绍了GAN的原理和最新的应用。昨天我们介绍了此内容,请查看

【干货】Google GAN之父Ian Goodfellow ICCV2017演讲:解读生成对抗网络的原理与应用

今天专知内容组特此整理了GAN的知识资料大全,为大家呈上,欢迎查看。

理论学习

训练GANs的技巧

http://papers.nips.cc/paper/6124-improved-techniques-for-training-gans.pdf

Energy-Based GANs 以及Yann Le Cun 的相关研究

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

模式正则化GAN

https://arxiv.org/pdf/1612.02136.pdf

最新NIPS2016也有最新的关于训练GAN模型的总结

https://github.com/soumith/ganhacks

The GAN Zoo千奇百怪的生成对抗网络,都在这里了。你没看错,里面已经有有近百个了。

https://github.com/hindupuravinash/the-gan-zoo

报告

Ian Goodfellow的GANs报告ICCV 2017

https://pan.baidu.com/s/1bpIZvfL

Ian Goodfellow的GANs报告ICCV 2017的中文讲稿

https://mp.weixin.qq.com/s/nPBFrnO3_QJjAzm37G5ceQ

Ian Goodfellow的GANs报告NIPS 2016

http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf

Ian Goodfellow的GANs报告NIPS 2016 的中文讲稿

http://www.sohu.com/a/121189842_465975

Russ Salakhutdinov的深度生成模型

http://www.cs.toronto.edu/~rsalakhu/talk_Montreal_2016_Salakhutdinov.pdf

课程

NIPS 2016教程:生成对抗网络

https://arxiv.org/pdf/1701.00160.pdf

训练GANs的技巧和窍门

https://github.com/soumith/ganhacks

OpenAI生成模型

https://blog.openai.com/generative-models/

用Keras实现MNIST生成对抗模型

https://oshearesearch.com/index.PHP/2016/07/01/mnist-generative-adversarial-model-in-keras/

用深度学习TensorFlow实现图像修复

http://bamos.github.io/2016/08/09/deep-completion/

中文教程

生成对抗网络初学入门:一文读懂GAN的基本原理

http://www.xtecher.com/Xfeature/view?aid=7496

深入浅出:GAN原理与应用入门介绍

https://zhuanlan.zhihu.com/p/28731033

港理工在读博士李嫣然深入浅出GAN之应用篇

https://pan.baidu.com/s/1o8n4UDk 密码: 78wt

中科院自动化所 中文综述 《生成式对抗网络 GAN 的研究进展与展望》

https://pan.baidu.com/s/1dEMITo9 密码: qqcc

萌物生成器:如何使用四种GAN制造猫图

https://zhuanlan.zhihu.com/p/27769807

GAN学习指南:从原理入门到制作生成Demo

https://zhuanlan.zhihu.com/p/24767059x

生成式对抗网络GAN研究进展

http://blog.csdn.net/solomon1558/article/details/52537114

生成对抗网络(GAN)的前沿进展(论文、报告、框架和Github资源)汇总

http://blog.csdn.net/love666666shen/article/details/74953970

综述

中科院自动化所 中文综述 《生成式对抗网络 GAN 的研究进展与展望》

参考链接: https://pan.baidu.com/s/1dEMITo9 密码: qqcc

Github 资源

深度卷积生成对抗模型(DCGAN)

https://github.com/Newmu/dcgan_code

TensorFlow实现深度卷积生成对抗模型(DCGAN)

https://github.com/carpedm20/DCGAN-tensorflow

Torch实现深度卷积生成对抗模型(DCGAN)

https://github.com/soumith/dcgan.torch

Keras实现深度卷积生成对抗模型(DCGAN)

https://github.com/jacobgil/keras-dcgan

使用神经网络生成自然图像(Facebook的Eyescream项目)

https://github.com/facebook/eyescream

对抗自编码(AdversarialAutoEncoder)

https://github.com/musyoku/adversarial-autoencoder

利用ThoughtVectors 实现文本到图像的合成

https://github.com/paarthneekhara/text-to-image

对抗样本生成器(Adversarialexample generator)

https://github.com/e-lab/torch-toolbox/tree/master/Adversarial

深度生成模型的半监督学习

https://github.com/dpkingma/nips14-ssl

GANs的训练方法

https://github.com/openai/improved-gan

生成式矩匹配网络(Generative Moment Matching Networks, GMMNs)

https://github.com/yujiali/gmmn

对抗视频生成

https://github.com/dyelax/Adversarial_Video_Generation

基于条件对抗网络的图像到图像翻译(pix2pix)

https://github.com/phillipi/pix2pix

对抗机器学习库Cleverhans

https://github.com/openai/cleverhans

最新论文

基于深度卷积生成对抗网络的无监督学习(Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (DCGANs))2015

https://arxiv.org/pdf/1511.06434v2.pdf

对抗实例的解释和利用(Explaining and Harnessing Adversarial Examples)2014

https://arxiv.org/pdf/1412.6572.pdf

基于深度生成模型的半监督学习( Semi-Supervised Learning with Deep Generative Models )2014

https://arxiv.org/pdf/1406.5298v2.pdf

基于拉普拉斯金字塔生成式对抗网络的深度图像生成模型(Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks)2015

http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-5.

http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-5.

https://arxiv.org/pdf/1606.03498v1.pdf

条件生成对抗网络(Conditional Generative Adversarial Nets)2014

https://arxiv.org/pdf/1411.1784v1.pdf

生成式矩匹配网络(Generative Moment Matching Networks)2015

http://proceedings.mlr.press/v37/li15.pdf

超越均方误差的深度多尺度视频预测(Deep multi-scale video prediction beyond mean square error)2015

https://arxiv.org/pdf/1511.05440.pdf

通过学习相似性度量的超像素自编码(Autoencoding beyond pixels using a learned similarity metric)2015

https://arxiv.org/pdf/1512.09300.pdf

对抗自编码(Adversarial Autoencoders)2015

https://arxiv.org/pdf/1511.05644.pdf

InfoGAN:基于信息最大化GANs的可解释表达学习(InfoGAN:Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets)2016

https://arxiv.org/pdf/1606.03657v1.pdf

上下文像素编码:通过修复进行特征学习(Context Encoders: Feature Learning by Inpainting)2016

http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Pathak_Context_Encoders_Feature_CVPR_2016_paper.pdf

http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Pathak_Context_Encoders_Feature_CVPR_2016_paper.pdf

http://proceedings.mlr.press/v48/reed16.pdf

基于像素卷积神经网络的条件生成图片(Conditional Image Generation with PixelCNN Decoders)2015

https://arxiv.org/pdf/1606.05328.pdf

对抗特征学习(Adversarial Feature Learning)2016

https://arxiv.org/pdf/1605.09782.pdf

结合逆自回归流的变分推理(Improving Variational Inference with Inverse Autoregressive Flow )2016

https://papers.nips.cc/paper/6581-improving-variational-autoencoders-with-inverse-autoregressive-flow.pdf

深度学习系统对抗样本黑盒攻击(Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples)2016

https://arxiv.org/pdf/1602.02697.pdf

参加,推断,重复:基于生成模型的快速场景理解(Attend, infer, repeat: Fast scene understanding with generative models)2016

https://arxiv.org/pdf/1603.08575.pdf

f-GAN: 使用变分散度最小化训练生成神经采样器(f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization )2016

http://papers.nips.cc/paper/6066-tagger-deep-unsupervised-perceptual-grouping.pdf

在自然图像流形上的生成视觉操作(Generative Visual Manipulation on the Natural Image Manifold)2016

https://arxiv.org/pdf/1609.03552.pdf

通过平均差异最大优化训练生成神经网络(Training generative neural networks via Maximum Mean Discrepancy optimization)2015

https://arxiv.org/pdf/1505.03906.pdf

对抗性推断学习(Adversarially Learned Inference)2016

https://arxiv.org/pdf/1606.00704.pdf

基于循环对抗网络的图像生成(Generating images with recurrent adversarial networks)2016

https://arxiv.org/pdf/1602.05110.pdf

生成对抗模仿学习(Generative Adversarial Imitation Learning)2016

http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf

基于3D生成对抗模型学习物体形状的概率隐空间(Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling)2016

https://arxiv.org/pdf/1610.07584.pdf

学习画画(Learning What and Where to Draw)2016

https://arxiv.org/pdf/1610.02454v1.pdf

基于辅助分类器GANs的条件图像合成(Conditional Image Synthesis with Auxiliary Classifier GANs)2016

https://arxiv.org/pdf/1610.09585.pdf

隐生成模型的学习(Learning in Implicit Generative Models)2016

https://arxiv.org/pdf/1610.03483.pdf

VIME: 变分信息最大化探索(VIME: Variational Information Maximizing Exploration)2016

http://papers.nips.cc/paper/6591-vime-variational-information-maximizing-exploration.pdf

生成对抗网络的展开(Unrolled Generative Adversarial Networks)2016

https://arxiv.org/pdf/1611.02163.pdf

训练生成对抗网络的基本方法(Towards Principled Methods for Training Generative Adversarial Networks)2017

https://arxiv.org/pdf/1701.04862.pdf

基于内省对抗网络的神经图像编辑(Neural Photo Editing with Introspective Adversarial Networks)2016

https://arxiv.org/pdf/1609.07093.pdf

基于解码器的生成模型的定量分析(On the Quantitative Analysis of Decoder-Based Generative Models )2016

https://arxiv.org/pdf/1611.04273.pdf

结合生成对抗网络和Actor-Critic 方法(Connecting Generative Adversarial Networks and Actor-Critic Methods)2016

https://arxiv.org/pdf/1610.01945.pdf

通过对抗网络使用模拟和非监督图像训练( Learning from Simulated and Unsupervised Images through Adversarial Training)2016

https://arxiv.org/pdf/1612.07828.pdf

基于上下文RNN-GANs的抽象推理图的生成(Contextual RNN-GANs for Abstract Reasoning Diagram Generation)2016

https://arxiv.org/pdf/1609.09444.pdf

生成多对抗网络(Generative Multi-Adversarial Networks)2016

https://arxiv.org/pdf/1611.01673.pdf

生成对抗网络组合(Ensembles of Generative Adversarial Network)2016

https://arxiv.org/pdf/1612.00991.pdf

改进生成器目标的GANs(Improved generator objectives for GANs) 2016

https://arxiv.org/pdf/1612.02780.pdf

生成对抗模型的隐向量精准修复(Precise Recovery of Latent Vectors from Generative Adversarial Networks)2017

https://openreview.NET/pdf?id=HJC88BzFl

生成混合模型(Generative Mixture of Networks)2017

https://arxiv.org/pdf/1702.03307.pdf

记忆生成时空模型(Generative Temporal Models with Memory)2017

https://arxiv.org/pdf/1702.04649.pdf

停止GAN暴力:生成性非对抗模型(Stopping GAN Violence: Generative Unadversarial Networks)2017

https://arxiv.org/pdf/1703.02528.pdf

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-10-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 专知 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档