前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Codeforces 834D The Bakery【dp+线段树维护+lazy】

Codeforces 834D The Bakery【dp+线段树维护+lazy】

作者头像
Angel_Kitty
发布2018-04-09 15:31:19
6350
发布2018-04-09 15:31:19
举报
文章被收录于专栏:小樱的经验随笔

D. The Bakery

time limit per test:2.5 seconds

memory limit per test:256 megabytes

input:standard input

output:standard output

Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredients and a wonder-oven which can bake several types of cakes, and opened the bakery.

Soon the expenses started to overcome the income, so Slastyona decided to study the sweets market. She learned it's profitable to pack cakes in boxes, and that the more distinct cake types a box contains (let's denote this number as the value of the box), the higher price it has.

She needs to change the production technology! The problem is that the oven chooses the cake types on its own and Slastyona can't affect it. However, she knows the types and order of n cakes the oven is going to bake today. Slastyona has to pack exactly k boxes with cakes today, and she has to put in each box several (at least one) cakes the oven produced one right after another (in other words, she has to put in a box a continuous segment of cakes).

Slastyona wants to maximize the total value of all boxes with cakes. Help her determine this maximum possible total value.

Input

The first line contains two integers n and k (1 ≤ n ≤ 35000, 1 ≤ k ≤ min(n, 50)) – the number of cakes and the number of boxes, respectively.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) – the types of cakes in the order the oven bakes them.

Output

Print the only integer – the maximum total value of all boxes with cakes.

Examples

Input

代码语言:javascript
复制
4 1
1 2 2 1

Output

代码语言:javascript
复制
2

Input

代码语言:javascript
复制
7 2
1 3 3 1 4 4 4

Output

代码语言:javascript
复制
5

Input

代码语言:javascript
复制
8 3
7 7 8 7 7 8 1 7

Output

代码语言:javascript
复制
6

Note

In the first example Slastyona has only one box. She has to put all cakes in it, so that there are two types of cakes in the box, so the value is equal to 2.

In the second example it is profitable to put the first two cakes in the first box, and all the rest in the second. There are two distinct types in the first box, and three in the second box then, so the total value is 5.

题目链接:http://codeforces.com/contest/834/problem/D

题意:把n个数分成k段,每段的价值等于这一段内不同数字的个数,求总的最大价值。

可以很快发现这是一个dp,dp[i][j]表示到第i个数字,已经分成了k段的最大价值。

dp[i][j] = max(dp[t][j-1]) (1<= t < i)

可以发现转移不是那么容易,所以我们用到线段树去维护当前位置前面的最大价值。

对于状态i,j,线段树维护的是1~i-1的最大值

对于每一个位置,找到前面最后一个与它数字相同的的位置,把这之间线段树的值都加上1,然后dp[i][j]的值就是j-1到i-1的最大值。

最后答案就是dp[n][k]。

(注意线段树的区间范围是0~n,因为可以直接从0转移过来)

下面给出AC代码:【二维数组改写成一维数组(个人原因,不太喜欢高维度的)】

代码语言:javascript
复制
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 #define maxn 35010
 4 #define INF 0x3f3f3f3f
 5 int addv[maxn*4],Max[maxn*4];
 6 int dp[maxn],ql,qr;
 7 int pre[maxn], last[maxn], a[maxn];
 8 void build(int l,int r,int o)
 9 {
10     addv[o]=0;
11     if(l == r)
12     {
13         Max[o]=dp[l];
14         return;
15     }
16     int mid=l+(r-l)/2;
17     build(l,mid,o*2);
18     build(mid+1,r,o*2+1);
19     Max[o]=max(Max[o*2],Max[o*2+1]);
20 }
21 void pushdown(int o)
22 {
23     int lc=o*2,rc=o*2+1;
24     if(addv[o])
25     {
26         addv[lc]+=addv[o];
27         addv[rc]+=addv[o];
28         Max[lc]+=addv[o];
29         Max[rc]+=addv[o];
30         addv[o]=0;
31     }
32 }
33 void update(int l,int r,int o)
34 {
35     if(ql>qr)
36         return;
37     if(ql<=l&&qr>=r)
38     {
39         addv[o]++;
40         Max[o]++;
41         return;
42     }
43     pushdown(o);
44     int mid=l+(r-l)/2;
45     if(ql<=mid)
46        update(l,mid,o*2);
47     if(qr>mid)
48        update(mid+1,r,o*2+1);
49     Max[o]=max(Max[o*2],Max[o*2+1]);
50 }
51 int query(int l,int r,int o)
52 {
53     if(ql<=l&&qr>=r)
54     {
55         return Max[o];
56     }
57     pushdown(o);
58     int mid=l+(r-l)/2;
59     int best=-INF;
60     if(ql<=mid)
61        best=max(best,query(l,mid,o*2));
62     if(qr>mid)
63        best=max(best,query(mid+1,r,o*2+1));
64     return best;
65 }
66 int main()
67 {
68     int n,k;
69     scanf("%d%d",&n,&k);
70     memset(last,-1,sizeof(last));
71     int cnt=0;
72     for(int i=1;i<=n;i++)
73     {
74         scanf("%d",&a[i]);
75         pre[i]=last[a[i]];
76         last[a[i]]=i;
77         if(pre[i]==-1)
78            cnt++;
79         dp[i]=cnt;
80     }
81     for(int kk=2;kk<=k;kk++)
82     {
83         for(int i=1;i<kk-1;i++)
84             dp[i]=-INF;
85         build(1,n,1);
86         for(int i=kk;i<=n;i++)
87         {
88             ql=max(1,pre[i]),qr=i-1;
89             update(1,n,1);
90             ql=1,qr=i-1;
91             dp[i]=query(1,n,1);
92         }
93     }
94     printf("%d\n",dp[n]);
95     return 0;
96 }

 官方题解:

代码语言:javascript
复制
 1 #include <cstdio>
 2 #include <cstring>
 3 #include <map>
 4 
 5 #define K first
 6 #define V second
 7 
 8 const int N = 35001;
 9 
10 int last[N], pre[N], dp[N];
11 
12 int main()
13 {
14     int n, m;
15     while (scanf("%d%d", &n, &m) == 2) {
16         memset(last, 0, sizeof(last));
17         for (int i = 1, a; i <= n; ++ i) {
18             scanf("%d", &a);
19             pre[i] = last[a];
20             last[a] = i;
21         }
22         dp[0] = 0;
23         for (int i = 1; i <= n; ++ i) {
24             dp[i] = dp[i - 1] + !pre[i];
25         }
26         for (int k = 2; k <= m; ++ k) {
27             std::map<int, int> c;
28             c[0] = n + 1;
29             int last_dp = dp[k - 1];
30             for (int i = k; i <= n; ++ i) {
31                 int now = 0;
32                 while (now + c.rbegin()->V <= last_dp) {
33                     now += c.rbegin()->V;
34                     c.erase(c.rbegin()->K);
35                 }
36                 c.rbegin()->V += now - last_dp;
37                 c[i] = last_dp + 1;
38                 auto it = c.upper_bound(pre[i]);
39                 it --;
40                 it->V --;
41                 if (it->V == 0) {
42                     c.erase(it->K);
43                 }
44                 last_dp = dp[i];
45                 dp[i] = (n + 1) - c.begin()->V;
46             }
47         }
48         printf("%d\n", dp[n]);
49     }
50 }
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-07-31 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • D. The Bakery
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档