专栏首页首席架构师智库三个无人讨论的大数据的发展趋势

三个无人讨论的大数据的发展趋势

您在一年前讨论大数据将与今天的对话截然不同。

我们最近看到数据科学从外围功能显着转变为核心功能,更大的团队解决日益复杂的分析问题。我们已经看到数据科学平台的快速发展和对数据和分析团队的巨大影响。但是,在数据,分析和机器学习方面,存在哪些惊喜呢?

数据科学将在一年内谈论什么新的发展?以下是我们的三个预测:

大数据的收益递减:数据的大小不再是重点。

我们越来越多地看到更大的数据通常不会更好。公司意识到,提取更多数据可能无法帮助他们更有效地解决某些问题。

尽管如果干净的数据更多的数据可能是有用的,绝大多数的业务用例都会减少边际回报。更多的数据实际上可以减缓创新,使得数据科学家在测试需要更长时间并需要更多的基础设施时,更难以快速迭代。

与较少数据集的实验相比,实验和迭代更快将导致更好的模型和结果。麻省理工学院研究员Kalyan Veeramachaneni写道:“如果公司希望从数据中获得价值,他们需要专注于加速人们对数据的了解,缩短在短时间内可以询问数据的建模问题数量。

事实上,财富500强企业将采取更灵活和更迭的方法,重点是从更高质量的数据样本中学习更多。他们将使用技术来提取更具代表性的数据示例,从而可以从这些子样本得出更好的结论。例如,它们不是处理PB级的呼叫中心录音,而是在最近2-3个月内进行抽样,运行数十个实验,并更快地向团队提供流失预测以获得反馈。

2.首席信息官处理数据科学的拓展:IT团队为数据和分析带来了秩序。

IT组织传统上管理数据仓库和生产流程等分析数据基础设施。在实验的欲望驱动下,数据科学家们正在越来越多地创建自己的影子IT基础设施。他们在桌面或分散在部门的共享服务器上本地下载和安装。他们使用RStudio,Jupyter,Anaconda和无数的开源软件包几乎每天都在改进。

这种工具的狂野西方造成了大量的治理挑战。许多CIO团队意识到数据科学家需要一致和安全的工具的程度,而不会限制他们的实验和创新能力。

在明年,组织将越来越多地将数据科学工具纳入IT作为服务提供。通过集中为数据科学家提供基础架构的解决方案,CIO将透明化使用哪些数据和工具,实施最佳实践,并更好地管理对数据科学工作流程至关重要的专业硬件的成本。

3.需要展示您的工作:增加模型风险管理和监督。

随着欧盟国内生产总值在2018年5月生效,随着全球监管行业数据模型使用的增加,数据治理比以往任何时候都更为重要。许多数据导向型行业(金融,银行,保险,医疗保健,公用事业)都是受监管力量最大的行业之一。在这些行业中,随着价格,贷款,营销和产品可用性的关键决策越来越多地受到数据科学的推动,决策者正在注意。该法规的范围不仅限于使用什么数据,还包括如何使用和使用数据,增加了复杂性。

一个例子是美国联邦储备委员会发行SR 11-7,其要求包括“[要求]银行将模型使用和开发与验证分开,建立一个综合的全公司模式风险功能,维护所有的库存模型,并充分记录他们的设计和使用,“Risk.net的Nazneen Sherif写道。

同样增加的需求和审查也开始达到其他受监管行业。美国司法部门阻止了Anthem-Cigna和Aetna-Humana之间的医疗保险收购,部分原因在于它们不足以证明其数据驱动的效率和定价要求。随着数据科学和分析推动更多的组织决策,以及代表决策方案的更大部分 - 期望更多的内部和外部数据模型审查。

SR 11-7的例子是说明性的。美联储发布三年后,美联储得出结论认为,一些银行控股公司(BHC)在压力测试模式的严格测试领域没有达到其要求。美联储然后强制要求BHC“有一个可靠的记录系统来整理CCAR提交所需的信息,”最近的一篇Oracle博客文章总结道。 “如果记录系统为机密信息提供可审计性,可追溯性和安全性,它也可以作为高层管理人员和监管机构的保证。”

因此,组织需要更好地记录和展示他们的数据科学工作。

未来,许多公司和数据科学家将继续关注可预测的:大数据,最新的新算法,以及机器学习的不断扩展。但是,我们认为上述新的发展是唤醒呼唤,这是组织数据科学成熟的关键转折点。

本文分享自微信公众号 - 首席架构师智库(jiagoushipro),作者:Henry Han

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-07-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 「数据战略」业务成果驱动的企业数据战略

    我们现在生活在泽塔比时代。zettabyte(ZB)是数据的测量单位,1zb等于1021字节。要了解仅仅1zb的规模,请考虑以下情况:根据思科的数据,2016年...

    首席架构师智库
  • 「数据战略」数据战略的范围和复杂性

    Wayne Eckerson最近的报告“数据战略指南:每个高管人员需要了解的内容”回答了许多关于数据战略的内容,原因和时间的问题。但是,与所有战略工作一样,数据...

    首席架构师智库
  • 「数据战略」结果驱动的企业数据策略:组织和治理

    企业数据战略系列的一部分,探讨了领导力和责任感在指导与业务成果相关的总体数据战略方面的重要性。

    首席架构师智库
  • 不忘初心,砥砺前行——写在数据院成立四周年之际

    数据派THU
  • 投稿 | 现阶段我为什么不看好纯粹的数据交易?

    原力大数据创始人江颖表示,尽管大数据交易平台建设正值爆发期,数据交易号称的市场规模也在不断壮大,同时也有国家大力的政策支持。但是短期内,我仍然不看好数据交易,因...

    数据猿
  • 数据猿专访 | 北大新媒体研究院副院长刘德寰:大数据将在公共卫生领域迎来爆发式发展

    <数据猿导读> 刘德寰教授在接受数据猿采访时说到,公共卫生跟人的生命密切关联,未来,大数据一定会在公共卫生领域有巨大的应用前景跟爆发式发展;但同时也很担忧,现在...

    数据猿
  • 《大数据产业”十三五“规划(2016-2020)》正式发布!

    导读:近日,工业和信息化部正式发布了《大数据产业发展规划(2016-2020年)》(以下简称《规划》),明确了大数据产业发展在技术产品、应用能力、生态体系建设等...

    钱塘数据
  • 公司利用大数据的三大模式

    导读:根据所提供价值的不同来源,分别出现了三种大数据公司。这三种来源是指:数据本身、 技能与思维。出现的三种大数据公司分别是基于数据本身的公司、基于技能的公司、...

    钱塘数据
  • 大数据24小时 | 美国创企LogicMonitor完成 1.3亿美元融资 ,京东金融再扩版图布局车联网大数据

    <数据猿导读> 提供数据中心监测服务的美国创企LogicMonitor完成 1.3亿美元融资;东南卫视与认知数据合作,布局影视文化大数据;京东金融再扩版图,合作...

    数据猿
  • 盛世的阴影:大数据时代的挑战渐渐浮出水面

    数据猿导读 6月29日,由数据猿主办的金融大数据峰会在上海盛大召开,现场汇集了众多来自大数据领域内执牛耳的重量级嘉宾。大数据被誉为第四次工业革命的能源,整个产业...

    数据猿

扫码关注云+社区

领取腾讯云代金券