# 洛谷P2939 [USACO09FEB]改造路Revamping Trails(最短路)

## 题目描述

Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= 50,000) trails conveniently numbered 1..M from pasture 1 all the way out to pasture N (a journey which is always possible for trail maps given in the test data). The N (1 <= N <= 10,000) pastures conveniently numbered 1..N on Farmer John's farm are currently connected by bidirectional dirt trails. Each trail i connects pastures P1_i and P2_i (1 <= P1_i <= N; 1 <= P2_i <= N) and requires T_i (1 <= T_i <= 1,000,000) units of time to traverse.

He wants to revamp some of the trails on his farm to save time on his long journey. Specifically, he will choose K (1 <= K <= 20) trails to turn into highways, which will effectively reduce the trail's traversal time to 0. Help FJ decide which trails to revamp to minimize the resulting time of getting from pasture 1 to N.

TIME LIMIT: 2 seconds

## 输入输出格式

* Line 1: Three space-separated integers: N, M, and K

* Lines 2..M+1: Line i+1 describes trail i with three space-separated integers: P1_i, P2_i, and T_i

* Line 1: The length of the shortest path after revamping no more than K edges

## 输入输出样例

4 4 1
1 2 10
2 4 10
1 3 1
3 4 100 

1

## 说明

K is 1; revamp trail 3->4 to take time 0 instead of 100. The new shortest path is 1->3->4, total traversal time now 1.

#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
#define Pair pair<int,int>
#define F first
#define S second
const int MAXN=1e6+10;
using namespace std;
{
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int N,M,K;
int dis[MAXN][21],vis[MAXN][21];
struct node
{
int u,v,w,nxt;
}edge[MAXN];
inline void AddEdge(int x,int y,int z)
{
}
void Dijstra()
{
memset(dis,0xf,sizeof(dis));
dis[1][0]=0;//第i个点，第j层
priority_queue< pair<int,Pair > > q;
q.push(make_pair(0,make_pair(1,0)));//第一个表示点，第二个表示层
while(q.size()!=0)
{
while(vis[q.top().S.F][q.top().S.S]&&q.size()>0) q.pop();
Pair p=q.top().second;
vis[p.F][p.S]=1;
{
int will=edge[i].v;
if(vis[will][p.S]==0&&dis[will][p.S]>dis[p.F][p.S]+edge[i].w)
dis[will][p.S]=dis[p.F][p.S]+edge[i].w,
q.push(make_pair(-dis[will][p.S],make_pair(will,p.S)));
if(p.S+1<=K&&vis[will][p.S+1]==0&&dis[will][p.S+1]>dis[p.F][p.S])
dis[will][p.S+1]=dis[p.F][p.S],
q.push(make_pair(-dis[will][p.S+1],make_pair(will,p.S+1)));
}
}
printf("%d",dis[N][K]);
}
int main()
{
for(int i=1;i<=M;i++)
{
}
Dijstra();
return 0;
}

1811 篇文章119 人订阅

0 条评论

## 相关文章

3369

981

3929

6807

### SSE图像算法优化系列十一：使用FFT变换实现图像卷积。

本文重点主要不在于FFT的SSE优化，而在于使用FFT实现快速卷积的相关技巧和过程。   关于FFT变换，有很多参考的代码，特别是对于长...

5389

6955

2942

2094

7254

842