专栏首页有趣的django12.python进程\协程\异步IO

12.python进程\协程\异步IO

进程

Python中的多线程无法利用多核优势 , 所以如果我们想要充分地使用多核CPU的资源 , 那么就只能靠多进程了

multiprocessing模块中提供了Process , Queue , Pipe , Lock , RLock , Event , Condition等组件 , 与threading模块有很多相似之处

1.创建进程

from multiprocessing import Process
import time

def func(name):
    time.sleep(2)
    print('hello',name)

if __name__ == '__main__':
    p= Process(target=func,args=('derek',))
    p.start()
    # p.join()
    print('end...')

2.进程间通讯

(1)Queue

不同进程间内存是不共享的,要想实现两个进程间的数据交换。进程间通信有两种主要形式 , 队列和管道

from multiprocessing import Process, Queue   #Queue是进程排列

def f(test):
    test.put('22')   #通过创建的子进程往队列添加数据,实线父子进程交互

if __name__ == '__main__':
    q = Queue()      #父进程
    q.put("11")

    p = Process(target=f, args=(q,))   #子进程
    p.start()
    p.join()

    print("取到:",q.get_nowait())
    print("取到:",q.get_nowait())

#父进程在创建子进程的时候就把q克隆一份给子进程
#通过pickle序列化、反序列化,来达到两个进程之间的交互



结果:
取到: 11
取到: 22

(2)Pipe(管道)

The Pipe() function returns a pair of connection objects connected by a pipe which by default is duplex (two-way).

from multiprocessing import Process, Pipe

def f(conn):
    conn.send('11')
    conn.send('22')
    print("from parent:",conn.recv())
    print("from parent:", conn.recv())
    conn.close()

if __name__ == '__main__':
    parent_conn, child_conn = Pipe()   #生成管道实例,可以互相send()和recv()

    p = Process(target=f, args=(child_conn,))
    p.start()

    print(parent_conn.recv())      # prints "11"
    print(parent_conn.recv())      # prints "22"
    parent_conn.send("33")         # parent 发消息给 child
    parent_conn.send("44")
    p.join()

3.Manager

进程之间是相互独立的 ,Queue和pipe只是实现了数据交互,并没实现数据共享,Manager可以实现进程间数据共享 。

Manager还支持进程中的很多操作 , 比如Condition , Lock , Namespace , Queue , RLock , Semaphore等

from multiprocessing import Process, Manager
import os

def f(d, l):
    d[os.getpid()] =os.getpid()
    l.append(os.getpid())
    print(l)

if __name__ == '__main__':
    with Manager() as manager:
        d = manager.dict()  #{} #生成一个字典,可在多个进程间共享和传递

        l = manager.list(range(5))     #生成一个列表,可在多个进程间共享和传递
        p_list = []
        for i in range(2):
            p = Process(target=f, args=(d, l))
            p.start()
            p_list.append(p)
        for res in p_list: #等待结果
            res.join()
        print(d)
        print(l)

4.lock

from multiprocessing import Process, Lock

def f(l, i):
    #l.acquire()
    print('hello world', i)
    #l.release()


if __name__ == '__main__':
    lock = Lock()

    for num in range(100):
        Process(target=f, args=(lock, num)).start()     #要把lock传到函数的参数l
        
#lock防止在屏幕上打印的时候会乱

5.进程池

进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进程,那么程序就会等待,直到进程池中有可用进程为止。

进程池中有以下几个主要方法:

  1. apply:从进程池里取一个进程并执行
  2. apply_async:apply的异步版本
  3. terminate:立刻关闭线程池
  4. join:主进程等待所有子进程执行完毕,必须在close或terminate之后
  5. close:等待所有进程结束后,才关闭线程池
from  multiprocessing import Process, Pool
import time
import os

def Foo(i):
    time.sleep(2)
    print("in process",os.getpid())
    return i + 100

def Bar(arg):
    print('-->exec done:', arg,os.getpid())

if __name__ == '__main__':    #多进程,必须加这一句(windows系统)
    pool = Pool(processes=3) #允许进程池同时放入3个进程
    print("主进程",os.getpid())
    
    for i in range(10):       
        pool.apply_async(func=Foo, args=(i,), callback=Bar) #callback=回调,执行完Foo(),接着执行Bar()
        # pool.apply(func=Foo, args=(i,)) #串行
        
    print('end')
    pool.close()
    pool.join()   #进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。必须先close(),再join()

协程

1.简介

协程(Coroutine) : 是单线程下的并发 , 又称微线程 , 纤程 . 协程是一种用户态的轻量级线程 , 即协程有用户自己控制调度

协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。

协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态

使用协程的优缺点

优点 :

  1. 协程的切换开销更小 , 属于程序级别的切换 , 更加轻量级
  2. 单线程内就可以实现并发的效果 , 最大限度利用CPU

缺点 :

  1. 协程的本质是单线程下 , 无法利用多核 , 可以是一个程序开启多个进程 , 每个进程内开启多个线程 , 每个线程内开启协程
  2. 协程指的是单个线程 , 因而一旦协程出现阻塞 将会阻塞整个线程

2.Greenlet

greenlet是一个用C实现的协程模块,相比与python自带的yield,它可以使你在任意函数之间随意切换,而不需把这个函数先声明为generator

手动切换

from greenlet import greenlet

def test1():
    print(12)
    gr2.switch()      #到这里切换到gr2,执行test2()
    print(34)
    gr2.switch()      #切换到上次gr2运行的位置

def test2():
    print(56)
    gr1.switch()      #切换到上次gr1运行的位置
    print(78)

gr1 = greenlet(test1)      #启动一个协程gr1
gr2 = greenlet(test2)      #启动一个协程gr2

gr1.switch()        #开始运行gr1

3.Gevent

Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。

(1)IO阻塞自动切换

import gevent

def foo():
    print('Running in foo')
    gevent.sleep(2)
    print('阻塞时间最长,最后运行')

def bar():
    print('running in bar')
    gevent.sleep(1)
    print('foo()还在阻塞,这里第二个运行')

def func3():
    print("running in func3 ")
    gevent.sleep(0)
    print("其它两个还在IO阻塞先运行")

#创建协程实例
gevent.joinall([
    gevent.spawn(foo), #生成,
    gevent.spawn(bar),
    gevent.spawn(func3),
])

#遇到IO自动切换




结果:
Running in foo
running in bar
running in func3 
其它两个还在IO阻塞先运行
foo()还在阻塞,这里第二个运行
阻塞时间最长,最后运行

Process finished with exit code 0

 由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成:

(2)爬虫例子:

from urllib import request
import gevent,time
from gevent import monkey
monkey.patch_all() #作用:把当前程序的所有的io操作给我单独的做上标记

def f(url):
    print('GET: %s' % url)
    resp = request.urlopen(url)
    data = resp.read()
    print('%d bytes received from %s.' % (len(data), url))

#同步需要的时间
urls = ['https://www.python.org/',
        'https://www.yahoo.com/',
        'https://github.com/' ]
time_start = time.time()
for url in urls:
    f(url)
print("同步cost",time.time() - time_start)

#下面是异步花费的时间
async_time_start = time.time()
gevent.joinall([
    gevent.spawn(f, 'https://www.python.org/'),
    gevent.spawn(f, 'https://www.yahoo.com/'),
    gevent.spawn(f, 'https://github.com/'),
])
print("异步cost",time.time() - async_time_start)


结果:
GET: https://www.python.org/
48954 bytes received from https://www.python.org/.
GET: https://www.yahoo.com/
491871 bytes received from https://www.yahoo.com/.
GET: https://github.com/
51595 bytes received from https://github.com/.
同步cost 4.928282260894775
GET: https://www.python.org/
GET: https://www.yahoo.com/
GET: https://github.com/
48954 bytes received from https://www.python.org/.
494958 bytes received from https://www.yahoo.com/.
51599 bytes received from https://github.com/.
异步cost 1.4920852184295654

IO多路复用

详解:http://www.cnblogs.com/alex3714/articles/5876749.html

selectors模块

selectors基于select模块实现IO多路复用,调用语句selectors.DefaultSelector(),特点是根据平台自动选择最佳IO多路复用机制,调用顺序:epoll > poll > select

做一个socket servers

import selectors
import socket
sel = selectors.DefaultSelector()        # 根据平台自动选择最佳IO多路复用机制

def accept(sock, mask):
    conn, addr = sock.accept()           # Should be ready
    # print('accepted', conn, 'from', addr,mask)
    conn.setblocking(False)              #设置为非阻塞IO
    sel.register(conn, selectors.EVENT_READ, read)
                                         #新连接注册read回调函数
                                         #将conn和read函数注册到一起,当conn有变化时执行read函数

def read(conn, mask):
    data = conn.recv(1024)  # Should be ready
    if data:
        print('echoing', repr(data), 'to', conn)
        conn.send(data)                  # Hope it won't block
    else:
        print('closing', conn)
        sel.unregister(conn)
        conn.close()

sock = socket.socket()
sock.bind(('localhost', 9999))
sock.listen(100)
sock.setblocking(False)             #设置为非阻塞IO
sel.register(sock, selectors.EVENT_READ, accept)
                                    # 将sock和accept函数注册到一起,当sock有变化时执行accept函数

while True:
    events = sel.select()  #默认阻塞,有活动连接就返回活动的连接列表,监听[(key1,mask1),(key2),(mask2)]

    for key, mask in events:
        callback = key.data                 #accept      #1 key.data就是accept   # 2 key.data就是read
        callback(key.fileobj, mask)         #key.fileobj=  文件句柄
                                            # 1 key.fileobj就是sock   # 2 key.fileobj就是conn
client
import socket
import sys

messages = [ b'This is the message. ',
             b'It will be sent ',
             b'in parts.',
             ]
server_address = ('localhost', 9999)

# Create a TCP/IP socket
socks = [ socket.socket(socket.AF_INET, socket.SOCK_STREAM) for i in range(5)]
print(socks)
# Connect the socket to the port where the server is listening
print('connecting to %s port %s' % server_address)
for s in socks:
    s.connect(server_address)

for message in messages:

    # Send messages on both sockets
    for s in socks:
        print('%s: sending "%s"' % (s.getsockname(), message) )
        s.send(message)

    # Read responses on both sockets
    for s in socks:
        data = s.recv(1024)
        print( '%s: received "%s"' % (s.getsockname(), data) )
        if not data:
            print( 'closing socket', s.getsockname() )

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 3.GO-项目结构和包访问权限

    在项目目录下创建src目录,在src目录下创建demo目录,在demo目录下创建demo.go文件

    zhang_derek
  • 6.python内置函数

    1. abs() 获取绝对值 >>> abs(-10) 10 >>> a = -10 >>> a.__abs__() 10 2. all()   参数为可迭代对...

    zhang_derek
  • 面试题目及答案

    1 Python的函数参数传递 看两个例子: a = 1 def fun(a): a = 2 fun(a) print a # 1 a = [] de...

    zhang_derek
  • python3--队列Queue,管道Pipe,进程之间的数据共享,进程池Pool,回调函数callback

    既打印了主进程put的值,也打印了子进程put的值,在进程中使用队列可以完成双向通信

    py3study
  • Python--进程

    进程:正则进行的一个过程或者说一个任务,而负责执行任务的则是CPU。进程是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操...

    py3study
  • python进程开发

        程序并不能单独运行,只有将程序装载到内存中,系统为它分配资源才能运行,而这种执行的程序就称之为进程。程序和进程的区别就在于:程序是指令的集合,它是进程...

    py3study
  • Python 多进程 多线程数据共享

    py3study
  • 第36天并发编程之进程篇

    步骤一:创建一个py程序,用来打印三个人的信息,创建了三个函数,每个函数里面都有一个sleep来模拟网络延迟,因此我们写出了下面的代码

    py3study
  • 2.并发编程多编程

    ​ python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程。P...

    changxin7
  • 计算机发展史与进程

    (单核情况下)多个用户使用CPU时是串行的,一个一个执行,只有一个程序执行完成才能执行下一个程序 。

    GH

扫码关注云+社区

领取腾讯云代金券