专栏首页专知【专知荟萃25】文字识别OCR知识资料全集(入门/进阶/论文/综述/代码/专家,附查看)

【专知荟萃25】文字识别OCR知识资料全集(入门/进阶/论文/综述/代码/专家,附查看)

OCR文字,车牌,验证码识别 专知荟萃

  • 入门学习
  • 论文及代码
    • 文字识别
    • 文字检测
    • 验证码破解
    • 手写体识别
    • 车牌识别
  • 实战项目
  • 视频

入门学习

  1. 端到端的OCR:基于CNN的实现
    • blog: [http://blog.xlvector.net/2016-05/mxnet-ocr-cnn/]
  2. 如何用卷积神经网络CNN识别手写数字集?
    • blog: [http://www.cnblogs.com/charlotte77/p/5671136.html]
  3. OCR文字识别用的是什么算法?
    • [https://www.zhihu.com/question/20191727]
  4. 基于计算机视觉/深度学习打造先进OCR工作流 Creating a Modern OCR Pipeline Using Computer Vision and Deep Learning
    • [https://blogs.dropbox.com/tech/2017/04/creating-a-modern-ocr-pipeline-using-computer-vision-and-deep-learning/]
  5. 车牌识别中的不分割字符的端到端(End-to-End)识别
    • [http://m.blog.csdn.net/Relocy/article/details/52174198]
  6. 端到端的OCR:基于CNN的实现
    • [http://blog.xlvector.net/2016-05/mxnet-ocr-cnn/]
  7. 腾讯OCR—自动识别技术,探寻文字真实的容颜
    • [http://blog.xlvector.net/2016-05/mxnet-ocr-cnn/]
  8. Tesseract-OCR引擎 入门
    • [http://blog.csdn.net/xiaochunyong/article/details/7193744]
  9. 汽车挡风玻璃VIN码识别
    • [https://github.com/DoctorDYL/VINOCR]
  10. 车牌识别算法的关键技术及其研究现状
    • [http://www.siat.cas.cn/xscbw/xsqk/201012/W020101222564768411838.pdf]
  11. 端到端的OCR:验证码识别
    • [https://zhuanlan.zhihu.com/p/21344595?refer=xlvector]

论文及代码

文字识别

  1. Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
    • intro: Google. Ian J. Goodfellow
    • arxiv: [https://arxiv.org/abs/1312.6082]
  2. End-to-End Text Recognition with Convolutional Neural Networks
    • paper: [http://www.cs.stanford.edu/~acoates/papers/wangwucoatesng_icpr2012.pdf]
    • PhD thesis: [http://cs.stanford.edu/people/dwu4/HonorThesis.pdf]
  3. Word Spotting and Recognition with Embedded Attributes
    • paper: [http://ieeexplore.ieee.org.sci-hub.org/xpl/articleDetails.jsp?arnumber=6857995&filter%3DAND%28p_IS_Number%3A6940341%29]
  4. Reading Text in the Wild with Convolutional Neural Networks
    • arxiv: [http://arxiv.org/abs/1412.1842]
    • homepage: [http://www.robots.ox.ac.uk/~vgg/publications/2016/Jaderberg16/]
    • demo: [http://zeus.robots.ox.ac.uk/textsearch/#/search/]
    • code: [http://www.robots.ox.ac.uk/~vgg/research/text/]
  5. Deep structured output learning for unconstrained text recognition
    • arxiv: [http://arxiv.org/abs/1412.5903]
  6. Deep Features for Text Spotting
    • paper: [http://www.robots.ox.ac.uk/~vgg/publications/2014/Jaderberg14/jaderberg14.pdf]
    • bitbucket: [https://bitbucket.org/jaderberg/eccv2014_textspotting]
    • gitxiv: [http://gitxiv.com/posts/uB4y7QdD5XquEJ69c/deep-features-for-text-spotting]
  7. Reading Scene Text in Deep Convolutional Sequences
    • arxiv: [http://arxiv.org/abs/1506.04395]
  8. DeepFont: Identify Your Font from An Image
    • arxiv: [http://arxiv.org/abs/1507.03196]
  9. An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
    • intro: Convolutional Recurrent Neural Network
    • arxiv: [http://arxiv.org/abs/1507.05717]
    • github: [https://github.com/bgshih/crnn]
    • github: [https://github.com/meijieru/crnn.pytorch]
  10. Recursive Recurrent Nets with Attention Modeling for OCR in the Wild
    • arxiv: [http://arxiv.org/abs/1603.03101]
  11. Writer-independent Feature Learning for Offline Signature Verification using Deep Convolutional Neural Networks
    • arxiv: [http://arxiv.org/abs/1604.00974]
  12. DeepText: A Unified Framework for Text Proposal Generation and Text Detection in Natural Images
    • arxiv: [http://arxiv.org/abs/1605.07314]
  13. End-to-End Interpretation of the French Street Name Signs Dataset
    • paper: [http://link.springer.com/chapter/10.1007%2F978-3-319-46604-0_30]
    • github: [https://github.com/tensorflow/models/tree/master/street]
  14. End-to-End Subtitle Detection and Recognition for Videos in East Asian Languages via CNN Ensemble with Near-Human-Level Performance
    • arxiv: [https://arxiv.org/abs/1611.06159]
  15. Smart Library: Identifying Books in a Library using Richly Supervised Deep Scene Text Reading
    • arxiv: [https://arxiv.org/abs/1611.07385]
  16. Improving Text Proposals for Scene Images with Fully Convolutional Networks
    • intro: Universitat Autonoma de Barcelona & University of Florence
    • intro: International Conference on Pattern Recognition - DLPR workshop
    • arxiv: [https://arxiv.org/abs/1702.05089]
  17. Scene Text Eraser
    • [https://arxiv.org/abs/1705.02772]
  18. Attention-based Extraction of Structured Information from Street View Imagery
    • intro: University College London & Google Inc
    • arxiv: [https://arxiv.org/abs/1704.03549]
    • github: [https://github.com/tensorflow/models/tree/master/attention_ocr]
  19. STN-OCR: A single Neural Network for Text Detection and Text Recognition
    • arxiv: [https://arxiv.org/abs/1707.08831]
    • github: [https://github.com/Bartzi/stn-ocr]
  20. Sequence to sequence learning for unconstrained scene text recognition
    • intro: master thesis
    • arxiv: [http://arxiv.org/abs/1607.06125]
  21. Drawing and Recognizing Chinese Characters with Recurrent Neural Network
    • arxiv: [https://arxiv.org/abs/1606.06539]
  22. Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition
    • intro: correct rates: Dataset-CASIA 97.10% and Dataset-ICDAR 97.15%
    • arxiv: [https://arxiv.org/abs/1610.02616]
  23. Stroke Sequence-Dependent Deep Convolutional Neural Network for Online Handwritten Chinese Character Recognition
    • arxiv: [https://arxiv.org/abs/1610.04057]
  24. Visual attention models for scene text recognition
    • [https://arxiv.org/abs/1706.01487]
  25. Focusing Attention: Towards Accurate Text Recognition in Natural Images
    • intro: ICCV 2017
    • arxiv: [https://arxiv.org/abs/1709.02054]
  26. Scene Text Recognition with Sliding Convolutional Character Models
    • [https://arxiv.org/abs/1709.01727]
  27. AdaDNNs: Adaptive Ensemble of Deep Neural Networks for Scene Text Recognition
    • [https://arxiv.org/abs/1710.03425]
  28. A New Hybrid-parameter Recurrent Neural Networks for Online Handwritten Chinese Character Recognition
    • [https://arxiv.org/abs/1711.02809]
  29. Arbitrarily-Oriented Text Recognition
    • intro: A method used in ICDAR 2017 word recognition competitions
    • arxiv: [https://arxiv.org/abs/1711.04226]

文字检测

  1. Object Proposals for Text Extraction in the Wild
    • intro: ICDAR 2015
    • arxiv: [http://arxiv.org/abs/1509.02317]
    • github: [https://github.com/lluisgomez/TextProposals]
  2. Text-Attentional Convolutional Neural Networks for Scene Text Detection
    • arxiv: [http://arxiv.org/abs/1510.03283]
  3. Accurate Text Localization in Natural Image with Cascaded Convolutional Text Network
    • arxiv: [http://arxiv.org/abs/1603.09423]
  4. Synthetic Data for Text Localisation in Natural Images
    • intro: CVPR 2016
    • project page: [http://www.robots.ox.ac.uk/~vgg/data/scenetext/]
    • arxiv: [http://arxiv.org/abs/1604.06646]
    • paper: [http://www.robots.ox.ac.uk/~vgg/data/scenetext/gupta16.pdf]
    • github: [https://github.com/ankush-me/SynthText]
  5. Scene Text Detection via Holistic, Multi-Channel Prediction
    • arxiv: [http://arxiv.org/abs/1606.09002]
  6. Detecting Text in Natural Image with Connectionist Text Proposal Network
    • intro: ECCV 2016
    • arxiv: [http://arxiv.org/abs/1609.03605]
    • github: [https://github.com/tianzhi0549/CTPN]
    • github: [https://github.com/qingswu/CTPN]
    • demo: [http://textdet.com/]
    • github: [https://github.com/eragonruan/text-detection-ctpn]
  7. TextBoxes: A Fast Text Detector with a Single Deep Neural Network
    • intro: AAAI 2017
    • arxiv: [https://arxiv.org/abs/1611.06779]
    • github: [https://github.com/MhLiao/TextBoxes]
    • github: [https://github.com/xiaodiu2010/TextBoxes-TensorFlow]
  8. Deep Matching Prior Network: Toward Tighter Multi-oriented Text Detection
    • intro: CVPR 2017
    • intro: F-measure 70.64%, outperforming the existing state-of-the-art method with F-measure 63.76%
    • arxiv: [https://arxiv.org/abs/1703.01425]
  9. Detecting Oriented Text in Natural Images by Linking Segments
    • intro: CVPR 2017
    • arxiv: [https://arxiv.org/abs/1703.06520]
    • github: [https://github.com/dengdan/seglink]
  10. Deep Direct Regression for Multi-Oriented Scene Text Detection
    • arxiv: [https://arxiv.org/abs/1703.08289]
  11. Cascaded Segmentation-Detection Networks for Word-Level Text Spotting
    • [https://arxiv.org/abs/1704.00834]
  12. WordFence: Text Detection in Natural Images with Border Awareness
    • intro: ICIP 2017
    • arcxiv: [https://arxiv.org/abs/1705.05483]
  13. SSD-text detection: Text Detector
    • intro: A modified SSD model for text detection
    • github: [https://github.com/oyxhust/ssd-text_detection]
  14. R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection
    • intro: Samsung R&D Institute China
    • arxiv: [https://arxiv.org/abs/1706.09579]
  15. R-PHOC: Segmentation-Free Word Spotting using CNN
    • intro: ICDAR 2017
    • arxiv: [https://arxiv.org/abs/1707.01294]
  16. Towards End-to-end Text Spotting with Convolutional Recurrent Neural Networks
    • [https://arxiv.org/abs/1707.03985]
  17. EAST: An Efficient and Accurate Scene Text Detector
    • intro: CVPR 2017
    • arxiv: [https://arxiv.org/abs/1704.03155]
    • github: [https://github.com/argman/EAST]
  18. Deep Scene Text Detection with Connected Component Proposals
    • intro: Amap Vision Lab, Alibaba Group
    • arxiv: [https://arxiv.org/abs/1708.05133]
  19. Single Shot Text Detector with Regional Attention
    • intro: ICCV 2017
    • arxiv: [https://arxiv.org/abs/1709.00138]
    • github: [https://github.com/BestSonny/SSTD]
    • code: [http://sstd.whuang.org]
  20. Fused Text Segmentation Networks for Multi-oriented Scene Text Detection
    • [https://arxiv.org/abs/1709.03272]
  21. Deep Residual Text Detection Network for Scene Text
    • intro: IAPR International Conference on Document Analysis and Recognition 2017. Samsung R&D Institute of China, Beijing
    • arxiv: [https://arxiv.org/abs/1711.04147]
  22. Feature Enhancement Network: A Refined Scene Text Detector
    • intro: AAAI 2018
    • arxiv: [https://arxiv.org/abs/1711.04249]
  23. ArbiText: Arbitrary-Oriented Text Detection in Unconstrained Scene
    • [https://arxiv.org/abs/1711.11249]

验证码破解

  1. Using deep learning to break a Captcha system
    • intro: "Using Torch code to break simplecaptcha with 92% accuracy"
    • blog: [https://deepmlblog.wordpress.com/2016/01/03/how-to-break-a-captcha-system/]
    • github: [https://github.com/arunpatala/captcha]
  2. Breaking reddit captcha with 96% accuracy
    • blog: [https://deepmlblog.wordpress.com/2016/01/05/breaking-reddit-captcha-with-96-accuracy/]
    • github: [https://github.com/arunpatala/reddit.captcha]
  3. I’m not a human: Breaking the Google reCAPTCHA
    • paper: [https://www.blackhat.com/docs/asia-16/materials/asia-16-Sivakorn-Im-Not-a-Human-Breaking-the-Google-reCAPTCHA-wp.pdf]
  4. Neural Net CAPTCHA Cracker
    • slides: [http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Spring15/geetika/CS298%20Slides%20-%20PDF]
    • github: [https://github.com/bgeetika/Captcha-Decoder]
    • demo: [http://cp-training.appspot.com/]
  5. Recurrent neural networks for decoding CAPTCHAS
    • blog: [https://deepmlblog.wordpress.com/2016/01/12/recurrent-neural-networks-for-decoding-captchas/]
    • demo: [http://simplecaptcha.sourceforge.net/]
    • code: [http://sourceforge.net/projects/simplecaptcha/]
  6. Reading irctc captchas with 95% accuracy using deep learning
    • github: [https://github.com/arunpatala/captcha.irctc]
  7. I Am Robot: Learning to Break Semantic Image CAPTCHAs
    • intro: automatically solving 70.78% of the image reCaptchachallenges, while requiring only 19 seconds per challenge. apply to the Facebook image captcha and achieve an accuracy of 83.5%
    • paper: [http://www.cs.columbia.edu/~polakis/papers/sivakorn_eurosp16.pdf]
  8. SimGAN-Captcha
    • intro: Solve captcha without manually labeling a training set
    • github: [https://github.com/rickyhan/SimGAN-Captcha]

手写体识别

  1. High Performance Offline Handwritten Chinese Character Recognition Using GoogLeNet and Directional Feature Maps
    • arxiv: [http://arxiv.org/abs/1505.04925]
    • github: [https://github.com/zhongzhuoyao/HCCR-GoogLeNet]
  2. Recognize your handwritten numbers
    • [https://medium.com/@o.kroeger/recognize-your-handwritten-numbers-3f007cbe46ff#.jllz62xgu]
  3. Handwritten Digit Recognition using Convolutional Neural Networks in Python with Keras
    • blog: [http://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/]
  4. MNIST Handwritten Digit Classifier
    • github: [https://github.com/karandesai-96/digit-classifier]
  5. LeNet – Convolutional Neural Network in Python
    • blog: [http://www.pyimagesearch.com/2016/08/01/lenet-convolutional-neural-network-in-python/]
  6. Scan, Attend and Read: End-to-End Handwritten Paragraph Recognition with MDLSTM Attention
    • arxiv: [http://arxiv.org/abs/1604.03286]
  7. MLPaint: the Real-Time Handwritten Digit Recognizer
    • blog: [http://blog.mldb.ai/blog/posts/2016/09/mlpaint/]
    • github: [https://github.com/mldbai/mlpaint]
    • demo: [https://docs.mldb.ai/ipy/notebooks/_demos/_latest/Image%20Processing%20with%20Convolutions.html]
  8. Training a Computer to Recognize Your Handwriting
    • [https://medium.com/@annalyzin/training-a-computer-to-recognize-your-handwriting-24b808fb584#.gd4pb9jk2]
  9. Using TensorFlow to create your own handwriting recognition engine
    • blog: [https://niektemme.com/2016/02/21/tensorflow-handwriting/]
    • github: [https://github.com/niektemme/tensorflow-mnist-predict/]
  10. Building a Deep Handwritten Digits Classifier using Microsoft Cognitive Toolkit
    • blog: [https://medium.com/@tuzzer/building-a-deep-handwritten-digits-classifier-using-microsoft-cognitive-toolkit-6ae966caec69#.c3h6o7oxf]
    • github: [https://github.com/tuzzer/ai-gym/blob/a97936619cf56b5ed43329c6fa13f7e26b1d46b8/MNIST/minist_softmax_cntk.py]
  11. Hand Writing Recognition Using Convolutional Neural Networks
    • intro: This CNN-based model for recognition of hand written digits attains a validation accuracy of 99.2% after training for 12 epochs. Its trained on the MNIST dataset on Kaggle.
    • github: [https://github.com/ayushoriginal/HandWritingRecognition-CNN]
  12. Design of a Very Compact CNN Classifier for Online Handwritten Chinese Character Recognition Using DropWeight and Global Pooling
    • intro: 0.57 MB, performance is decreased only by 0.91%.
    • arxiv: [https://arxiv.org/abs/1705.05207]
  13. Handwritten digit string recognition by combination of residual network and RNN-CTC
    • [https://arxiv.org/abs/1710.03112]

车牌识别

  1. Reading Car License Plates Using Deep Convolutional Neural Networks and LSTMs
    • arxiv: [http://arxiv.org/abs/1601.05610]
  2. Number plate recognition with Tensorflow
    • blog: [http://matthewearl.github.io/2016/05/06/cnn-anpr/]
    • github: [https://github.com/matthewearl/deep-anpr]
  3. end-to-end-for-plate-recognition
    • github: [https://github.com/szad670401/end-to-end-for-chinese-plate-recognition]
  4. Segmentation-free Vehicle License Plate Recognition using ConvNet-RNN
    • intro: International Workshop on Advanced Image Technology, January, 8-10, 2017. Penang, Malaysia. Proceeding IWAIT2017
    • arxiv: [https://arxiv.org/abs/1701.06439]
  5. License Plate Detection and Recognition Using Deeply Learned Convolutional Neural Networks
    • arxiv: [https://arxiv.org/abs/1703.07330]
    • api: [https://www.sighthound.com/products/cloud]
  6. Adversarial Generation of Training Examples for Vehicle License Plate Recognition
    • [https://arxiv.org/abs/1707.03124]
  7. Towards End-to-End Car License Plates Detection and Recognition with Deep Neural Networks
    • [https://arxiv.org/abs/1709.08828]

实战项目

  1. 多标签分类,端到端基于mxnet的中文车牌识别
    • [https://github.com/szad670401/end-to-end-for-chinese-plate-recognition]
  2. 中国二代身份证光学识别
    • [https://github.com/KevinGong2013/ChineseIDCardOCR]
  3. EasyPR 一个开源的中文车牌识别系统
    • [https://github.com/liuruoze/EasyPR]
  4. 汽车挡风玻璃VIN码识别
    • [https://github.com/DoctorDYL/VINOCR]
  5. CLSTM : A small C++ implementation of LSTM networks, focused on OCR
    • github: [https://github.com/tmbdev/clstm]
  6. OCR text recognition using tensorflow with attention
    • github: [https://github.com/pannous/caffe-ocr]
    • github: [https://github.com/pannous/tensorflow-ocr]
  7. Digit Recognition via CNN: digital meter numbers detection
    • github: [https://github.com/SHUCV/digit]
  8. Attention-OCR: Visual Attention based OCR
    • github: [https://github.com/da03/Attention-OCR]
  9. umaru: An OCR-system based on torch using the technique of LSTM/GRU-RNN, CTC and referred to the works of rnnlib and clstm
    • github: [https://github.com/edward-zhu/umaru]
  10. Tesseract.js: Pure Javascript OCR for 62 Languages
    • homepage: [http://tesseract.projectnaptha.com/]
    • github: [https://github.com/naptha/tesseract.js]
  11. DeepHCCR: Offline Handwritten Chinese Character Recognition based on GoogLeNet and AlexNet
    • github: [https://github.com/chongyangtao/DeepHCCR]
  12. deep ocr: make a better chinese character recognition OCR than tesseract
    • [https://github.com/JinpengLI/deep_ocr]
  13. Practical Deep OCR for scene text using CTPN + CRNN
    • [https://github.com/AKSHAYUBHAT/DeepVideoAnalytics/blob/master/notebooks/OCR/readme.md]
  14. Text-Detection-using-py-faster-rcnn-framework
    • github: [https://github.com/jugg1024/Text-Detection-with-FRCN]
  15. ocropy: Python-based tools for document analysis and OCR
    • github: [https://github.com/tmbdev/ocropy]
  16. Extracting text from an image using Ocropus
    • blog: [http://www.danvk.org/2015/01/09/extracting-text-from-an-image-using-ocropus.html]

视频

  1. LSTMs for OCR
  2. youtube: [https://www.youtube.com/watch?v=5vW8faXvnrc]

本文分享自微信公众号 - 专知(Quan_Zhuanzhi),作者:专知内容组

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-12-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 【2017年末AI最新论文精选】词向量fasttext,CNN is All,强化学习,自回归生成模型, 可视化神经网络损失函数

    【导读】专知内容组整理出最近arXiv放出的五篇论文,包括《Tomas Mikolov新作词向量表示,CNN Is All You Need,强化学习库, 自回...

    WZEARW
  • 【专知荟萃20】图像分割Image Segmentation知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)

    图像分割 (Image Segmentation) 专知荟萃 入门学习 进阶论文 综述 Tutorial 视频教程 代码 Semantic segmentati...

    WZEARW
  • AI与深度学习重点回顾:Denny Britz眼中的2017

    【导读】近日,博客WILDML的作者Denny Britz把他眼中的2017年AI和深度学习的大事进行了一番梳理和总结:从AlphaGo的自主学习到AlphaG...

    WZEARW
  • 目标检测-20种常用深度学习算法论文、复现代码汇总

    Rich feature hierarchies for accurate object detection and semantic segmentation

    机器学习AI算法工程
  • LabelEnc: A New Intermediate Supervision Method for Object Detection

    绝命生
  • 我们为你精选了一份Jupyter/IPython笔记本集合 !(附大量资源链接)-下篇

    在Blogger中使用IPython发博客,也可以在博客文章中找到,完整的报告在这里。作者:Fernando Perez。

    数据派THU
  • eclipse 插件

    https://marketplace.eclipse.org/content/mybatipse

    pollyduan
  • 免费时代:盈利模式的转变

    中国移动免费送你一部手机,条件是要购买“套餐”;咖啡供应商可以免费送一台咖啡机,他的收入是出售咖啡包;惠普打印机最便宜的一款才300元,但打印墨盒却价值不菲……...

    BestSDK
  • .NET 基金会项目介绍-WCF

    WCF 包含一组面向客户端的类库,它使得基于 .NET Core 构建的应用能够调用 WCF 服务。

    newbe36524
  • 图像转换3D模型只需5行代码,英伟达推出3D深度学习工具Kaolin

    此外,Kaolin 库还可以大大降低为深度学习准备 3D 模型的工作量,代码可由 300 行锐减到仅仅 5 行。

    机器之心

扫码关注云+社区

领取腾讯云代金券