前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >听说GAN很高大上,其实就这么简单

听说GAN很高大上,其实就这么简单

作者头像
石晓文
发布2018-04-11 15:40:02
9080
发布2018-04-11 15:40:02
举报
文章被收录于专栏:小小挖掘机小小挖掘机

本文使用的tensorflow版本:1.4 tensorflow安装:pip install tensorflow

1、先来目睹一下效果吧

这篇文章讲解了如何使用GAN来生成我们的手写数字,我们首先来看看生成的效果吧: 10轮:

50轮:

100轮:

200轮:

可以看到,在10轮的时候,我们的Generator生成的图片非常模糊,几乎是无法用肉眼来分别数字的,到了第50轮的时候,已经初见雏形了,有一些数字比如1、4、5这些都可以很清楚的分辨出来,不过还并不是十分完美。到了100轮的时候,像数字8和9这些也基本能准确的生成了,而到200轮的时候,除去个别的以外,基本上都能正确的手写出来了,由于时间的原因,没有继续训练下去,如果大家感兴趣,可以训练更多轮,看看更好的效果。

2、思路解析

设定参数 本文设定的参数是,图片的大小是28*28,这是mnist图片的标准大小,后面是一些保存模型的设定。我们总共的训练轮数是500轮。在我们的Generator和Discriminator中,我们设定的是一个简单的有两层隐藏层的全链接神经网络。对于Generator来说,输入的的大小是[batch_size,z_size],第一个隐藏层有150个神经元,第二个隐藏层有300个神经元,输出的大小就是图片的size28*28。而对于Discriminator来说,我们的输入的大小是[batch_size * 2,img_size],因为我们要掺杂真实的img和Generator生成的img。第一个隐藏层有300个神经元,第二个隐藏层有150个神经元,输出层只有1个数,表示该图片为真实图片的概率。关于神经网络的结构我们会在后面详细讲解。

代码语言:javascript
复制
img_height = 28img_width = 28img_size = img_height * img_width

to_train = Trueto_restore = Falseoutput_path = "output"# 总迭代次数500max_epoch = 500h1_size = 150h2_size = 300z_size = 100batch_size = 256

创建Generator 刚才也讲到了,对于Generator来说,输入的的大小是[batch_size,z_size],第一个隐藏层有150个神经元,第二个隐藏层有300个神经元,输出的大小就是图片的size28*28。总的来说,经过Generator,由[batch_size,z_size] 变为 [batch_size,img_size]

代码语言:javascript
复制
# generate (model 1)def build_generator(z_prior):
    w1 = tf.Variable(tf.truncated_normal([z_size, h1_size], stddev=0.1), name="g_w1", dtype=tf.float32)
    b1 = tf.Variable(tf.zeros([h1_size]), name="g_b1", dtype=tf.float32)
    h1 = tf.nn.relu(tf.matmul(z_prior, w1) + b1)
    w2 = tf.Variable(tf.truncated_normal([h1_size, h2_size], stddev=0.1), name="g_w2", dtype=tf.float32)
    b2 = tf.Variable(tf.zeros([h2_size]), name="g_b2", dtype=tf.float32)
    h2 = tf.nn.relu(tf.matmul(h1, w2) + b2)
    w3 = tf.Variable(tf.truncated_normal([h2_size, img_size], stddev=0.1), name="g_w3", dtype=tf.float32)
    b3 = tf.Variable(tf.zeros([img_size]), name="g_b3", dtype=tf.float32)
    h3 = tf.matmul(h2, w3) + b3
    x_generate = tf.nn.tanh(h3)
    g_params = [w1, b1, w2, b2, w3, b3]    return x_generate, g_params

创建Discrminator 而对于Discriminator来说,我们的输入的大小是[batch_size * 2,img_size],因为我们要掺杂真实的img和Generator生成的img。第一个隐藏层有300个神经元,第二个隐藏层有150个神经元,输出层只有1个数,表示该图片为真实图片的概率。要注意,我们的输入和输出是严格对应的,所以对于输出成的输出h3来说,前batch_size个代表着对真实图片的判别概率,而后batch_size代表着对Generator生成的图片的判别概率。这里是用了一个tf.slice()函数,之前没有接触过,故在这里做一下记录: 1,函数原型 tf.slice(inputs,begin,size,name='') 2,用途:从inputs中抽取部分内容 inputs:可以是list,array,tensor begin:n维列表,begin[i] 表示从inputs中第i维抽取数据时,相对0的起始偏移量,也就是从第i维的begin[i]开始抽取数据 size:n维列表,size[i]表示要抽取的第i维元素的数目 所以可以看到,最终y_data保存的是真实图片的判别概率,这些值要越接近于1越好,而y_generated保存的是Generator生成的图片的判别概率,这些值要越接近于0越好。

代码语言:javascript
复制
def build_discriminator(x_data, x_generated, keep_prob):
    # tf.concat
    x_in = tf.concat([x_data, x_generated], 0)
    w1 = tf.Variable(tf.truncated_normal([img_size, h2_size], stddev=0.1), name="d_w1", dtype=tf.float32)
    b1 = tf.Variable(tf.zeros([h2_size]), name="d_b1", dtype=tf.float32)
    h1 = tf.nn.dropout(tf.nn.relu(tf.matmul(x_in, w1) + b1), keep_prob)
    w2 = tf.Variable(tf.truncated_normal([h2_size, h1_size], stddev=0.1), name="d_w2", dtype=tf.float32)
    b2 = tf.Variable(tf.zeros([h1_size]), name="d_b2", dtype=tf.float32)
    h2 = tf.nn.dropout(tf.nn.relu(tf.matmul(h1, w2) + b2), keep_prob)
    w3 = tf.Variable(tf.truncated_normal([h1_size, 1], stddev=0.1), name="d_w3", dtype=tf.float32)
    b3 = tf.Variable(tf.zeros([1]), name="d_b3", dtype=tf.float32)
    h3 = tf.matmul(h2, w3) + b3
    y_data = tf.nn.sigmoid(tf.slice(h3, [0, 0], [batch_size, -1], name=None))
    y_generated = tf.nn.sigmoid(tf.slice(h3, [batch_size, 0], [-1, -1], name=None))
    d_params = [w1, b1, w2, b2, w3, b3]    return y_data, y_generated, d_params

保存图片 关于保存图片的代码,我们这里就不讲了,这也不是重点,大家有兴趣的话可以研究下:

代码语言:javascript
复制
def show_result(batch_res, fname, grid_size=(8, 8), grid_pad=5):
    batch_res = 0.5 * batch_res.reshape((batch_res.shape[0], img_height, img_width)) + 0.5
    img_h, img_w = batch_res.shape[1], batch_res.shape[2]
    grid_h = img_h * grid_size[0] + grid_pad * (grid_size[0] - 1)
    grid_w = img_w * grid_size[1] + grid_pad * (grid_size[1] - 1)
    img_grid = np.zeros((grid_h, grid_w), dtype=np.uint8)    for i, res in enumerate(batch_res):        if i >= grid_size[0] * grid_size[1]:            break
        img = (res) * 255
        img = img.astype(np.uint8)
        row = (i // grid_size[0]) * (img_h + grid_pad)
        col = (i % grid_size[1]) * (img_w + grid_pad)
        img_grid[row:row + img_h, col:col + img_w] = img
    imsave(fname, img_grid)

设定训练目标 对于Discriminator来说,他希望能够使二分类的结果越准确越好,即越能准确判别真实图片和Generator生成的图片越好,所以我们这里使用类似于逻辑回归中的损失函数,而对于Generator来说,它希望的是Discriminator无法分辨它生成的图片,所以它希望Discriminator能将它生成的图片越多的分类为真实图片,所以我们设定的训练目标如下:

代码语言:javascript
复制
  # 损失函数的设置
    d_loss = - (tf.log(y_data) + tf.log(1 - y_generated))
    g_loss = - tf.log(y_generated)

    optimizer = tf.train.AdamOptimizer(0.0001)

    # 两个模型的优化函数
    d_trainer = optimizer.minimize(d_loss, var_list=d_params)
    g_trainer = optimizer.minimize(g_loss, var_list=g_params)

训练 训练其实很简单,每次得到batch_size大小的样本,先训练一次Discriminator,然后再训练我们的Generator

代码语言:javascript
复制
z_sample_val = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32)

    steps = 60000 / batch_size    for i in range(sess.run(global_step), max_epoch):        for j in np.arange(steps):            #         for j in range(steps):
            print("epoch:%s, iter:%s" % (i, j))            # 每一步迭代,我们都会加载256个训练样本,然后执行一次train_step
            x_value, _ = mnist.train.next_batch(batch_size)
            x_value = 2 * x_value.astype(np.float32) - 1
            z_value = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32)            # 执行生成
            sess.run(d_trainer,
                     feed_dict={x_data: x_value, z_prior: z_value, keep_prob: np.sum(0.7).astype(np.float32)})            # 执行判别
            if j % 1 == 0:
                sess.run(g_trainer,
                         feed_dict={x_data: x_value, z_prior: z_value, keep_prob: np.sum(0.7).astype(np.float32)})        

3、完整代码

本文涉及到的完整代码如下:

代码语言:javascript
复制
import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport numpy as npfrom skimage.io import imsaveimport osimport shutil

img_height = 28img_width = 28img_size = img_height * img_width

to_train = Trueto_restore = Falseoutput_path = "output"# 总迭代次数500max_epoch = 500h1_size = 150h2_size = 300z_size = 100batch_size = 256# generate (model 1)def build_generator(z_prior):
    w1 = tf.Variable(tf.truncated_normal([z_size, h1_size], stddev=0.1), name="g_w1", dtype=tf.float32)
    b1 = tf.Variable(tf.zeros([h1_size]), name="g_b1", dtype=tf.float32)
    h1 = tf.nn.relu(tf.matmul(z_prior, w1) + b1)
    w2 = tf.Variable(tf.truncated_normal([h1_size, h2_size], stddev=0.1), name="g_w2", dtype=tf.float32)
    b2 = tf.Variable(tf.zeros([h2_size]), name="g_b2", dtype=tf.float32)
    h2 = tf.nn.relu(tf.matmul(h1, w2) + b2)
    w3 = tf.Variable(tf.truncated_normal([h2_size, img_size], stddev=0.1), name="g_w3", dtype=tf.float32)
    b3 = tf.Variable(tf.zeros([img_size]), name="g_b3", dtype=tf.float32)
    h3 = tf.matmul(h2, w3) + b3
    x_generate = tf.nn.tanh(h3)
    g_params = [w1, b1, w2, b2, w3, b3]    return x_generate, g_params# discriminator (model 2)def build_discriminator(x_data, x_generated, keep_prob):
    # tf.concat
    x_in = tf.concat([x_data, x_generated], 0)
    w1 = tf.Variable(tf.truncated_normal([img_size, h2_size], stddev=0.1), name="d_w1", dtype=tf.float32)
    b1 = tf.Variable(tf.zeros([h2_size]), name="d_b1", dtype=tf.float32)
    h1 = tf.nn.dropout(tf.nn.relu(tf.matmul(x_in, w1) + b1), keep_prob)
    w2 = tf.Variable(tf.truncated_normal([h2_size, h1_size], stddev=0.1), name="d_w2", dtype=tf.float32)
    b2 = tf.Variable(tf.zeros([h1_size]), name="d_b2", dtype=tf.float32)
    h2 = tf.nn.dropout(tf.nn.relu(tf.matmul(h1, w2) + b2), keep_prob)
    w3 = tf.Variable(tf.truncated_normal([h1_size, 1], stddev=0.1), name="d_w3", dtype=tf.float32)
    b3 = tf.Variable(tf.zeros([1]), name="d_b3", dtype=tf.float32)
    h3 = tf.matmul(h2, w3) + b3
    y_data = tf.nn.sigmoid(tf.slice(h3, [0, 0], [batch_size, -1], name=None))
    y_generated = tf.nn.sigmoid(tf.slice(h3, [batch_size, 0], [-1, -1], name=None))
    d_params = [w1, b1, w2, b2, w3, b3]    return y_data, y_generated, d_params#def show_result(batch_res, fname, grid_size=(8, 8), grid_pad=5):
    batch_res = 0.5 * batch_res.reshape((batch_res.shape[0], img_height, img_width)) + 0.5
    img_h, img_w = batch_res.shape[1], batch_res.shape[2]
    grid_h = img_h * grid_size[0] + grid_pad * (grid_size[0] - 1)
    grid_w = img_w * grid_size[1] + grid_pad * (grid_size[1] - 1)
    img_grid = np.zeros((grid_h, grid_w), dtype=np.uint8)    for i, res in enumerate(batch_res):        if i >= grid_size[0] * grid_size[1]:            break
        img = (res) * 255
        img = img.astype(np.uint8)
        row = (i // grid_size[0]) * (img_h + grid_pad)
        col = (i % grid_size[1]) * (img_w + grid_pad)
        img_grid[row:row + img_h, col:col + img_w] = img
    imsave(fname, img_grid)def train():
    # load data(mnist手写数据集)
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

    x_data = tf.placeholder(tf.float32, [batch_size, img_size], name="x_data")
    z_prior = tf.placeholder(tf.float32, [batch_size, z_size], name="z_prior")
    keep_prob = tf.placeholder(tf.float32, name="keep_prob")
    global_step = tf.Variable(0, name="global_step", trainable=False)    # 创建生成模型
    x_generated, g_params = build_generator(z_prior)    # 创建判别模型
    y_data, y_generated, d_params = build_discriminator(x_data, x_generated, keep_prob)    # 损失函数的设置
    d_loss = - (tf.log(y_data) + tf.log(1 - y_generated))
    g_loss = - tf.log(y_generated)

    optimizer = tf.train.AdamOptimizer(0.0001)    # 两个模型的优化函数
    d_trainer = optimizer.minimize(d_loss, var_list=d_params)
    g_trainer = optimizer.minimize(g_loss, var_list=g_params)

    init = tf.global_variables_initializer()

    saver = tf.train.Saver()    # 启动默认图
    sess = tf.Session()    # 初始化
    sess.run(init)    if to_restore:
        chkpt_fname = tf.train.latest_checkpoint(output_path)
        saver.restore(sess, chkpt_fname)    else:        if os.path.exists(output_path):
            shutil.rmtree(output_path)
        os.mkdir(output_path)

    z_sample_val = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32)

    steps = 60000 / batch_size    for i in range(sess.run(global_step), max_epoch):        for j in np.arange(steps):            #         for j in range(steps):
            print("epoch:%s, iter:%s" % (i, j))            # 每一步迭代,我们都会加载256个训练样本,然后执行一次train_step
            x_value, _ = mnist.train.next_batch(batch_size)
            x_value = 2 * x_value.astype(np.float32) - 1
            z_value = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32)            # 执行生成
            sess.run(d_trainer,
                     feed_dict={x_data: x_value, z_prior: z_value, keep_prob: np.sum(0.7).astype(np.float32)})            # 执行判别
            if j % 1 == 0:
                sess.run(g_trainer,
                         feed_dict={x_data: x_value, z_prior: z_value, keep_prob: np.sum(0.7).astype(np.float32)})
        x_gen_val = sess.run(x_generated, feed_dict={z_prior: z_sample_val})
        show_result(x_gen_val, "output/sample{0}.jpg".format(i))
        z_random_sample_val = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32)
        x_gen_val = sess.run(x_generated, feed_dict={z_prior: z_random_sample_val})
        show_result(x_gen_val, "output/random_sample{0}.jpg".format(i))
        sess.run(tf.assign(global_step, i + 1))
        saver.save(sess, os.path.join(output_path, "model"), global_step=global_step)if __name__ == '__main__':
    train()
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-01-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小小挖掘机 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、先来目睹一下效果吧
  • 2、思路解析
  • 3、完整代码
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档