前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >快速高斯模糊算法

快速高斯模糊算法

作者头像
cpuimage
发布2018-04-12 14:42:54
1.6K0
发布2018-04-12 14:42:54
举报
文章被收录于专栏:算法+算法+算法+

刚才发现一份快速高斯模糊的实现。

源地址为:http://incubator.quasimondo.com/processing/gaussian_blur_1.php

作者信息为:
 Fast Gaussian Blur v1.3
 by Mario Klingemann <http://incubator.quasimondo.com>
processing源码: http://incubator.quasimondo.com/processing/fastblur.pde
效果图:
转为C语言实现版本。
 
代码如下:
// Fast Gaussian Blur v1.3
// by Mario Klingemann <http://incubator.quasimondo.com>
// C version updated and performance optimization by tntmonks(http://tntmonks.cnblogs.com)
// One of my first steps with Processing. I am a fan
// of blurring. Especially as you can use blurred images
// as a base for other effects. So this is something I
// might get back to in later experiments.
//
// What you see is an attempt to implement a Gaussian Blur algorithm
// which is exact but fast. I think that this one should be
// relatively fast because it uses a special trick by first
// making a horizontal blur on the original image and afterwards
// making a vertical blur on the pre-processed image. This
// is a mathematical correct thing to do and reduces the
// calculation a lot.
//
// In order to avoid the overhead of function calls I unrolled
// the whole convolution routine in one method. This may not
// look nice, but brings a huge performance boost.
//
//
// v1.1: I replaced some multiplications by additions
//       and added aome minor pre-caclulations.
//       Also add correct rounding for float->int conversion
//
// v1.2: I completely got rid of all floating point calculations
//       and speeded up the whole process by using a
//       precalculated multiplication table. Unfortunately
//       a precalculated division table was becoming too
//       huge. But maybe there is some way to even speed
//       up the divisions.
//
// v1.3: Fixed a bug that caused blurs that start at y>0
//	 to go wrong. Thanks to Jeroen Schellekens for 
//       finding it!

void GaussianBlur(unsigned char* img, unsigned  int x, unsigned int y, unsigned int w, unsigned int h, unsigned int comp, unsigned int radius)
{
	unsigned int i, j ;
	radius = min(max(1, radius), 248); 
	unsigned int kernelSize = 1 + radius * 2; 
	unsigned int* kernel = (unsigned int*)malloc(kernelSize* sizeof(unsigned int));
	memset(kernel, 0, kernelSize* sizeof(unsigned int)); 
	unsigned int(*mult)[256] = (unsigned int(*)[256])malloc(kernelSize * 256 * sizeof(unsigned int)); 
	memset(mult, 0, kernelSize * 256 * sizeof(unsigned int));
	unsigned	int sum = 0;
	for (i = 1; i < radius; i++){
		unsigned int szi = radius - i;
		kernel[radius + i] = kernel[szi] = szi*szi;
		sum += kernel[szi] + kernel[szi];
		for (j = 0; j < 256; j++){
			mult[radius + i][j] = mult[szi][j] = kernel[szi] * j;
		}
	}
	kernel[radius] = radius*radius;
	sum += kernel[radius];
	for (j = 0; j < 256; j++){
		 
		mult[radius][j] = kernel[radius] * j;
	}

	unsigned int   cr, cg, cb;
	unsigned int   xl, yl, yi, ym, riw;
	unsigned int   read, ri, p,   n;
	unsigned	int imgWidth = w;
	unsigned	int imgHeight = h;
	unsigned	int imageSize = imgWidth*imgHeight;
	unsigned char *	rgb = (unsigned char *)malloc(sizeof(unsigned char) * imageSize * 3);
	unsigned char *	r = rgb;
	unsigned char *	g = rgb + imageSize;
	unsigned char *	b = rgb + imageSize * 2;
	unsigned char *	rgb2 = (unsigned char *)malloc(sizeof(unsigned char) * imageSize * 3);
	unsigned char *	r2 = rgb2;
	unsigned char *	g2 = rgb2 + imageSize;
	unsigned char *	b2 = rgb2 + imageSize * 2;
 
	for (size_t yh = 0; yh < imgHeight; ++yh) {
 
		for (size_t xw = 0; xw < imgWidth; ++xw) {
			n = xw + yh* imgWidth;
			p = n*comp;
			r[n] = img[p];
			g[n] = img[p + 1];
			b[n] = img[p + 2];
		}
	}
	
	x = max(0, x);
	y = max(0, y);
	w = x + w - max(0, (x + w) - imgWidth);
	h = y + h - max(0, (y + h) - imgHeight);
	yi = y*imgWidth;
 
	for (yl = y; yl < h; yl++){
 
		for (xl = x; xl < w; xl++){
			cb = cg = cr = sum = 0;
			ri = xl - radius; 
			for (i = 0; i < kernelSize; i++){
				read = ri + i;
				if (read >= x && read < w)
				{
					read += yi;
					cr += mult[i][r[read]];
					cg += mult[i][g[read]];
					cb += mult[i][b[read]];
					sum += kernel[i];
				}
			}
			ri = yi + xl;
			r2[ri] = cr / sum;
			g2[ri] = cg / sum;
			b2[ri] = cb / sum;
		}
		yi += imgWidth;
	}
	yi = y*imgWidth;
 
	for (yl = y; yl < h; yl++){
		ym = yl - radius;
		riw = ym*imgWidth; 
		for (xl = x; xl < w; xl++){
			cb = cg = cr = sum = 0;
			ri = ym;
			read = xl + riw; 
			for (i = 0; i < kernelSize; i++){
				if (ri < h && ri >= y)
				{
					cr += mult[i][r2[read]];
					cg += mult[i][g2[read]];
					cb += mult[i][b2[read]];
					sum += kernel[i];
				}
				ri++;
				read += imgWidth;
			}
			p = (xl + yi)*comp;
			img[p] = (unsigned char)(cr / sum);
			img[p + 1] = (unsigned char)(cg / sum);
			img[p + 2] = (unsigned char)(cb / sum);
		}
		yi += imgWidth;
	}

	free(rgb);
	free(rgb2);
	free(kernel);
	free(mult);
}

  该代码,将二维数组进一步优化后可提升一定的速度。

在博主机子上测试一张5000x3000的图像,模糊半径为10的情况下,耗时4s.

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2015-10-22 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档