关于2的补码

问一个基本的问题。

负数在计算机中如何表示?

举例来说,+8在计算机中表示为二进制的1000,那么-8怎么表示呢?

很容易想到,可以将一个二进制位(bit)专门规定为符号位,它等于0时就表示正数,等于1时就表示负数。比如,在8位机中,规定每个字节的最高位为符号位。那么,+8就是00001000,而-8则是10001000。

但是,随便找一本《计算机原理》,都会告诉你,实际上,计算机内部采用2的补码(Two's Complement)表示负数。

什么是2的补码?

它是一种数值的转换方法,要分二步完成:

第一步,每一个二进制位都取相反值,0变成1,1变成0。比如,00001000的相反值就是11110111。

第二步,将上一步得到的值加1。11110111就变成11111000。

所以,00001000的2的补码就是11111000。也就是说,-8在计算机(8位机)中就是用11111000表示。

不知道你怎么看,反正我觉得很奇怪,为什么要采用这么麻烦的方式表示负数,更直觉的方式难道不好吗?

昨天,我在一本书里又看到了这个问题,然后就花了一点时间到网上找资料,现在总算彻底搞明白了。

2的补码的好处

首先,要明确一点。计算机内部用什么方式表示负数,其实是无所谓的。只要能够保持一一对应的关系,就可以用任意方式表示负数。所以,既然可以任意选择,那么理应选择一种最方便的方式。

2的补码就是最方便的方式。它的便利体现在,所有的加法运算可以使用同一种电路完成。

还是以-8作为例子。

假定有两种表示方法。一种是直觉表示法,即10001000;另一种是2的补码表示法,即11111000。请问哪一种表示法在加法运算中更方便?

随便写一个计算式,16 + (-8) = ?

16的二进制表示是 00010000,所以用直觉表示法,加法就要写成:

 00010000 +10001000 ---------  10011000

可以看到,如果按照正常的加法规则,就会得到10011000的结果,转成十进制就是-24。显然,这是错误的答案。也就是说,在这种情况下,正常的加法规则不适用于正数与负数的加法,因此必须制定两套运算规则,一套用于正数加正数,还有一套用于正数加负数。从电路上说,就是必须为加法运算做两种电路。

现在,再来看2的补码表示法。

 00010000 +11111000 --------- 100001000

可以看到,按照正常的加法规则,得到的结果是100001000。注意,这是一个9位的二进制数。我们已经假定这是一台8位机,因此最高的第9位是一个溢出位,会被自动舍去。所以,结果就变成了00001000,转成十进制正好是8,也就是16 + (-8) 的正确答案。这说明了,2的补码表示法可以将加法运算规则,扩展到整个整数集,从而用一套电路就可以实现全部整数的加法。

2的补码的本质

在回答2的补码为什么能正确实现加法运算之前,我们先看看它的本质,也就是那两个步骤的转换方法是怎么来的。

要将正数转成对应的负数,其实只要用0减去这个数就可以了。比如,-8其实就是0-8。

已知8的二进制是00001000,-8就可以用下面的式子求出:

 00000000 -00001000 ---------

因为00000000(被减数)小于0000100(减数),所以不够减。请回忆一下小学算术,如果被减数的某一位小于减数,我们怎么办?很简单,问上一位借1就可以了。

所以,0000000也问上一位借了1,也就是说,被减数其实是100000000,算式也就改写成:

100000000 -00001000 ---------  11111000

进一步观察,可以发现100000000 = 11111111 + 1,所以上面的式子可以拆成两个:

 11111111 -00001000 ---------  11110111 +00000001 ---------  11111000

2的补码的两个转换步骤就是这么来的。

为什么正数加法适用于2的补码?

实际上,我们要证明的是,X-Y或X+(-Y)可以用X加上Y的2的补码完成。

Y的2的补码等于(11111111-Y)+1。所以,X加上Y的2的补码,就等于:

X + (11111111-Y) + 1

我们假定这个算式的结果等于Z,即 Z = X + (11111111-Y) + 1

接下来,分成两种情况讨论。

第一种情况,如果X小于Y,那么Z是一个负数。这时,我们就对Z采用2的补码的逆运算,求出它对应的正数绝对值,再在前面加上负号就行了。所以,

Z = -[11111111-(Z-1)] = -[11111111-(X + (11111111-Y) + 1-1)] = X - Y

第二种情况,如果X大于Y,这意味着Z肯定大于11111111,但是我们规定了这是8位机,最高的第9位是溢出位,必须被舍去,这相当于减去100000000。所以,

Z = Z - 100000000 = X + (11111111-Y) + 1 - 100000000 = X - Y

这就证明了,在正常的加法规则下,可以利用2的补码得到正数与负数相加的正确结果。换言之,计算机只要部署加法电路和补码电路,就可以完成所有整数的加法。

(完)

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏小樱的经验随笔

CTF---编程入门第一题 循环

循环分值:10 来源: 北邮天枢战队 难度:易 参与人数:1478人 Get Flag:467人 答题人数:523人 解题通过率:89% 给出一个循环公式,对于...

398110
来自专栏小詹同学

Leetcode打卡 | No.012 整数转罗马数字

欢迎和小詹一起定期刷leetcode,每周一和周五更新一题,每一题都吃透,欢迎一题多解,寻找最优解!这个记录帖哪怕只有一个读者,小詹也会坚持刷下去的!

13510
来自专栏Crossin的编程教室

【每周一坑】罗马数字转换

罗马数字是欧洲在阿拉伯数字传入之前使用的一种数码,现在的使用已经非常少了,大概偶尔会在钟表、文章中的标号等地方还能见到。 罗马数字采用七个罗马字母作数字、即 I...

44170
来自专栏计算机视觉与深度学习基础

HDU2066

神坑的题目 思路就是枚举起点,迪杰斯特拉求最短路径,再枚举终点(如果起点终点一起枚举可能会超时,也能勉强扯上动态规划的思想吧),求最短路径。 如果剪枝可以加一个...

24970
来自专栏编程理解

动态规划(一):爬楼梯

时,处于原地,因为步长为 1 ~ 2 阶,不能有前进之后再后退的情况,所以只能有当前一种方式,所以

18820
来自专栏小樱的经验随笔

基数排序与桶排序,计数排序【详解】

桶排序简单入门篇^-^ 在我们生活的这个世界中到处都是被排序过的东东。站队的时候会按照身高排序,考试的名次需要按照分数排序,网上购物的时候会按照价格排序,电子邮...

42170
来自专栏潇涧技术专栏

Python Algorithms - C6 Divide and Combine and Conquer

Python算法设计篇(6) Chapter 6: Divide and Combine and Conquer

15820
来自专栏C/C++基础

统计无符号整数二进制中1的个数(Hamming weight)

之所以来记录这个问题的解法,是因为在在线编程中经常遇到,比如编程之美和京东的校招笔试以及很多其他公司都累此不疲的出这个考题。看似简单的问题,背后却隐藏着很多精妙...

24820
来自专栏C语言及其他语言

[每日一题]矩阵乘法

本次的题目来源于C语言网比赛栏目八月月赛第一题,记得去试试看看自己能不能AC哦!!! 题目描述 给定一个N阶矩阵A,输出A的M次幂(M是非负整数) 例如: ...

38750
来自专栏Python小屋

Python使用递归对任意嵌套列表进行扁平化

首先补充一个地方,之前有个文章演示的是猜数游戏,原文链接为猜数游戏用Python应该这样写,代码中漏掉了一个break语句,也就是说,在猜对的时候输出语句pri...

38380

扫码关注云+社区

领取腾讯云代金券