前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Discrete Logging

Discrete Logging

作者头像
attack
发布2018-04-13 14:55:11
5630
发布2018-04-13 14:55:11
举报

Description

Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

代码语言:javascript
复制
    B

L

代码语言:javascript
复制
 == N (mod P)

Input

Read several lines of input, each containing P,B,N separated by a space.

Output

For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

Sample Input

代码语言:javascript
复制
5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111

Sample Output

代码语言:javascript
复制
0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587

Hint

The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states

代码语言:javascript
复制
   B

(P-1)

代码语言:javascript
复制
 == 1 (mod P)

for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m

代码语言:javascript
复制
   B

(-m)

代码语言:javascript
复制
 == B

(P-1-m)

代码语言:javascript
复制
 (mod P) .

Source

Waterloo Local 2002.01.26

BSGS模板题

代码语言:javascript
复制
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<map>
 6 #define LL long long 
 7 using namespace std;
 8 LL a,b,c;
 9 map<LL,LL>mp;
10 LL fastpow(LL a,LL p,LL c)
11 {
12     LL base=a;LL ans=1;
13     while(p!=0)
14     {
15         if(p%2==1)ans=(ans*base)%c;
16         base=(base*base)%c;
17         p=p/2;
18     }
19     return ans;
20 }
21 int main()
22 {
23     // a^x = b (mod c)
24     while(scanf("%lld%lld%lld",&c,&a,&b)!=EOF)
25     {
26         LL m=ceil(sqrt(c));// 注意要向上取整 
27         mp.clear();
28         if(a%c==0)
29         {
30         printf("no solution\n");
31         continue;
32         }
33         // 费马小定理的有解条件 
34         LL ans;//储存每一次枚举的结果 b* a^j
35         for(LL j=0;j<=m;j++)  // a^(i*m) = b * a^j
36         {
37             if(j==0)
38             {
39                 ans=b%c;
40                 mp[ans]=j;// 处理 a^0 = 1 
41                 continue;
42             }
43             ans=(ans*a)%c;// a^j 
44             mp[ans]=j;// 储存每一次枚举的结果 
45         }
46         LL t=fastpow(a,m,c);
47         ans=1;//a ^(i*m)
48         LL flag=0;
49         for(LL i=1;i<=m;i++)
50         {
51             ans=(ans*t)%c;
52             if(mp[ans])
53             {
54                 LL out=i*m-mp[ans];// x= i*m-j
55                 printf("%lld\n",(out%c+c)%c);
56                 flag=1;
57                 break;
58             }
59             
60         }
61         if(!flag)
62         printf("no solution\n");    
63     }
64     
65     return 0;
66 }
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017-05-19 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档