【论文推荐】最新六篇生成式对抗网络(GAN)相关论文—半监督学习、对偶、交互生成对抗网络、激活、纳什均衡、tempoGAN

【导读】专知内容组整理了最近六篇生成式对抗网络(GAN)相关文章,为大家进行介绍,欢迎查看!

1. Exploiting the potential of unlabeled endoscopic video data with self-supervised learning(基于半监督学习的无标签内窥镜视频数据分析方法)



作者:Tobias Ross,David Zimmerer,Anant Vemuri,Fabian Isensee,Manuel Wiesenfarth,Sebastian Bodenstedt,Fabian Both,Philip Kessler,Martin Wagner,Beat Müller,Hannes Kenngott,Stefanie Speidel,Annette Kopp-Schneider,Klaus Maier-Hein,Lena Maier-Hein

摘要:Surgical data science is a new research field that aims to observe all aspects of the patient treatment process in order to provide the right assistance at the right time. Due to the breakthrough successes of deep learning-based solutions for automatic image annotation, the availability of reference annotations for algorithm training is becoming a major bottleneck in the field. The purpose of this paper was to investigate the concept of self-supervised learning to address this issue. Our approach is guided by the hypothesis that unlabeled video data can be used to learn a representation of the target domain that boosts the performance of state-of-the-art machine learning algorithms when used for pre-training. Core of the method is an auxiliary task based on raw endoscopic video data of the target domain that is used to initialize the convolutional neural network (CNN) for the target task. In this paper, we propose the re-colorization of medical images with a generative adversarial network (GAN)-based architecture as auxiliary task. A variant of the method involves a second pre-training step based on labeled data for the target task from a related domain. We validate both variants using medical instrument segmentation as target task. The proposed approach can be used to radically reduce the manual annotation effort involved in training CNNs. Compared to the baseline approach of generating annotated data from scratch, our method decreases exploratively the number of labeled images by up to 75% without sacrificing performance. Our method also outperforms alternative methods for CNN pre-training, such as pre-training on publicly available non-medical or medical data using the target task (in this instance: segmentation). As it makes efficient use of available (non-)public and (un-)labeled data, the approach has the potential to become a valuable tool for CNN (pre-)training.

期刊:arXiv, 2018年1月31日

网址

http://www.zhuanzhi.ai/document/a68c19d1710a87c55beb83e96addf549

2. Stable Distribution Alignment Using the Dual of the Adversarial Distance(使用对抗距离的对偶方法实现稳定的分布对齐)



作者:Ben Usman,Kate Saenko,Brian Kulis

摘要:Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.

期刊:arXiv, 2018年1月31日

网址

http://www.zhuanzhi.ai/document/297de1f8a1795eaa6a9a6ac5a6f7838f

3. Interactive Generative Adversarial Networks for Facial Expression Generation in Dyadic Interactions(二元交互下基于交互生成对抗网络的面部表情生成



作者:Behnaz Nojavanasghari,Yuchi Huang,Saad Khan

摘要:A social interaction is a social exchange between two or more individuals,where individuals modify and adjust their behaviors in response to their interaction partners. Our social interactions are one of most fundamental aspects of our lives and can profoundly affect our mood, both positively and negatively. With growing interest in virtual reality and avatar-mediated interactions,it is desirable to make these interactions natural and human like to promote positive effect in the interactions and applications such as intelligent tutoring systems, automated interview systems and e-learning. In this paper, we propose a method to generate facial behaviors for an agent. These behaviors include facial expressions and head pose and they are generated considering the users affective state. Our models learn semantically meaningful representations of the face and generate appropriate and temporally smooth facial behaviors in dyadic interactions.

期刊:arXiv, 2018年1月31日

网址

http://www.zhuanzhi.ai/document/61f0bbebb940dfaed05de648b0771747

4. Activation Maximization Generative Adversarial Nets(激活最大化生成对抗网络)



作者:Zhiming Zhou,Han Cai,Shu Rong,Yuxuan Song,Kan Ren,Weinan Zhang,Yong Yu,Jun Wang

摘要:Class labels have been empirically shown useful in improving the sample quality of generative adversarial nets (GANs). In this paper, we mathematically study the properties of the current variants of GANs that make use of class label information. With class aware gradient and cross-entropy decomposition, we reveal how class labels and associated losses influence GAN's training. Based on that, we propose Activation Maximization Generative Adversarial Networks (AM-GAN) as an advanced solution. Comprehensive experiments have been conducted to validate our analysis and evaluate the effectiveness of our solution, where AM-GAN outperforms other strong baselines and achieves state-of-the-art Inception Score (8.91) on CIFAR-10. In addition, we demonstrate that, with the Inception ImageNet classifier, Inception Score mainly tracks the diversity of the generator, and there is, however, no reliable evidence that it can reflect the true sample quality. We thus propose a new metric, called AM Score, to provide more accurate estimation on the sample quality. Our proposed model also outperforms the baseline methods in the new metric.

期刊:arXiv, 2018年1月31日

网址

http://www.zhuanzhi.ai/document/d9eed471c507e0564e40ff27419d5924

5. Coulomb GANs: Provably Optimal Nash Equilibria via Potential Fields(Coulomb GANs:通过势场得到最优的纳什均衡)



作者:Thomas Unterthiner,Bernhard Nessler,Calvin Seward,Günter Klambauer,Martin Heusel,Hubert Ramsauer,Sepp Hochreiter

摘要:Generative adversarial networks (GANs) evolved into one of the most successful unsupervised techniques for generating realistic images. Even though it has recently been shown that GAN training converges, GAN models often end up in local Nash equilibria that are associated with mode collapse or otherwise fail to model the target distribution. We introduce Coulomb GANs, which pose the GAN learning problem as a potential field of charged particles, where generated samples are attracted to training set samples but repel each other. The discriminator learns a potential field while the generator decreases the energy by moving its samples along the vector (force) field determined by the gradient of the potential field. Through decreasing the energy, the GAN model learns to generate samples according to the whole target distribution and does not only cover some of its modes. We prove that Coulomb GANs possess only one Nash equilibrium which is optimal in the sense that the model distribution equals the target distribution. We show the efficacy of Coulomb GANs on a variety of image datasets. On LSUN and celebA, Coulomb GANs set a new state of the art and produce a previously unseen variety of different samples.

期刊:arXiv, 2018年1月30日

网址

http://www.zhuanzhi.ai/document/2d31b735037dc088b83992d6e8462af1

6. tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow(tempoGAN: 超分辨流体流动的一种临时相干GAN)



作者:You Xie,Erik Franz,Mengyu Chu,Nils Thuerey

摘要:We propose a temporally coherent generative model addressing the super-resolution problem for fluid flows. Our work represents a first approach to synthesize four-dimensional physics fields with neural networks. Based on a conditional generative adversarial network that is designed for the inference of three-dimensional volumetric data, our model generates consistent and detailed results by using a novel temporal discriminator, in addition to the commonly used spatial one. Our experiments show that the generator is able to infer more realistic high-resolution details by using additional physical quantities, such as low-resolution velocities or vorticities. Besides improvements in the training process and in the generated outputs, these inputs offer means for artistic control as well. We additionally employ a physics-aware data augmentation step, which is crucial to avoid overfitting and to reduce memory requirements. In this way, our network learns to generate advected quantities with highly detailed, realistic, and temporally coherent features. Our method works instantaneously, using only a single time-step of low-resolution fluid data. We demonstrate the abilities of our method using a variety of complex inputs and applications in two and three dimensions.

期刊:arXiv, 2018年1月30日

网址

http://www.zhuanzhi.ai/document/49f8d725491101012f6096785e5f26b3

原文发布于微信公众号 - 专知(Quan_Zhuanzhi)

原文发表时间:2018-02-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

计算机视觉经典论文荟萃,深度学习方法占领9大方向,建议收藏

【导读】近日,大连理工大学的学生ArcherFMY针对近几年深度学习在计算机视觉领域的应用提供了一个非常详细的阅读清单。如果你在深度学习领域是一个新手,你可以会...

6329
来自专栏专知

【论文推荐】最新5篇推荐系统相关论文—文档向量矩阵分解、异构网络融合、树结构深度模型、深度强化学习、负二项矩阵分解

【导读】专知内容组整理了最近五篇推荐系统(Recommender System)相关文章,为大家进行介绍,欢迎查看! 1. ParVecMF: A Paragr...

4704
来自专栏专知

【论文推荐】最新六篇图像描述生成相关论文—字符级推断、视觉解释、语义对齐、实体感知、确定性非自回归

2557
来自专栏进击的程序猿

数据处理之PCA

视频地址:https://www.youtube.com/watch?v=koiTTim4M-s notebook地址:https://github.com/...

1672
来自专栏专知

【论文推荐】最新六篇网络节点表示相关论文—传播网络嵌入、十亿级网络节点表示、综述、属性感知、贝叶斯个性化排序、复杂网络分类

2912
来自专栏专知

最新5篇生成对抗网络相关论文推荐—FusedGAN、DeblurGAN、AdvGAN、CipherGAN、MMD GANS

【导读】专知内容组整理了最近生成对抗网络相关文章,为大家进行介绍,欢迎查看! 1. Semi-supervised FusedGAN for Condition...

7817
来自专栏专知

【论文推荐】最新5篇深度学习相关论文推介——感知度量、图像检索、联合视盘和视杯分割、谱聚类、MPI并行

【导读】专知内容组整理了最近人工智能领域相关期刊的5篇最新综述文章,为大家进行介绍,欢迎查看! 1. The Unreasonable Effectivenes...

4456
来自专栏AI研习社

126篇殿堂级深度学习论文分类整理 从入门到应用(下)

AI 研习社:本文接“126篇殿堂级深度学习论文分类整理 从入门到应用(上)”,是该整理的下半部分,即应用篇;按照各应用领域对论文进行分类。 3 应用 3.1 ...

3176
来自专栏专知

【论文推荐】最新六篇强化学习相关论文—Sublinear、机器阅读理解、加速强化学习、对抗性奖励学习、人机交互

1532
来自专栏CreateAMind

GAN论文解读推荐

ICLR 2017 的 submission DDL 刚刚过,网上就纷纷有了 ICLR 2017 导读的文章。本周我也将为大家带来 ICLR 2017 subm...

2283

扫码关注云+社区

领取腾讯云代金券