POJ 1365 Prime Land

                  Prime Land

Time Limit: 1000MS

Memory Limit: 10000K

Total Submissions: 2122

Accepted: 979

Description

Everybody in the Prime Land is using a prime base number system. In this system, each positive integer x is represented as follows: Let {pi}i=0,1,2,... denote the increasing sequence of all prime numbers. We know that x > 1 can be represented in only one way in the form of product of powers of prime factors. This implies that there is an integer kx and uniquely determined integers ekx, ekx-1, ..., e1, e0, (ekx > 0), that 

 The sequence  (ekx, ekx-1, ... ,e1, e0)  is considered to be the representation of x in prime base number system.  It is really true that all numerical calculations in prime base number system can seem to us a little bit unusual, or even hard. In fact, the children in Prime Land learn to add to subtract numbers several years. On the other hand, multiplication and division is very simple.  Recently, somebody has returned from a holiday in the Computer Land where small smart things called computers have been used. It has turned out that they could be used to make addition and subtraction in prime base number system much easier. It has been decided to make an experiment and let a computer to do the operation ``minus one''.  Help people in the Prime Land and write a corresponding program.  For practical reasons we will write here the prime base representation as a sequence of such pi and ei from the prime base representation above for which ei > 0. We will keep decreasing order with regard to pi. 

Input

The input consists of lines (at least one) each of which except the last contains prime base representation of just one positive integer greater than 2 and less or equal 32767. All numbers in the line are separated by one space. The last line contains number 0.

Output

The output contains one line for each but the last line of the input. If x is a positive integer contained in a line of the input, the line in the output will contain x - 1 in prime base representation. All numbers in the line are separated by one space. There is no line in the output corresponding to the last ``null'' line of the input.

Sample Input

17 1
5 1 2 1
509 1 59 1
0

Sample Output

2 4
3 2
13 1 11 1 7 1 5 1 3 1 2 1

题意:sum=(x1^n1)*(x2^n2)......(xn^nn) 求sum-1的因式分解

    通过这道题学会了sscanf将字符窜转换成数字

  sscanf(str,"%d",&t);//str是字符窜,t要赋予地址
还有个strtok,这个函数不错以后可以用的着
http://www.cppblog.com/masiyou/archive/2009/10/07/98038.html
#include <string.h>
#include <stdio.h>

int main(void)
{
   char input[16] = "abc,dhh,eee";
   char *p;

   /* strtok places a NULL terminator
   in front of the token, if found */
   p = strtok(input, ",");
   if (p)   printf("%s\n", p);

   /* A second call to strtok using a NULL
   as the first parameter returns a pointer
   to the character following the token  */
   p = strtok(NULL, ",");
   if (p)   printf("%s\n", p);

   p = strtok(NULL, ",");
   if (p)   printf("%s\n", p);
   return 0;
}
#include <stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
const int MAXN=40000;
struct Node
{
    int a,b;
}rem[1000];

char ss[1000];
int prime[MAXN],num[1000],vis[MAXN];
char str[1000];
int cnt,tes;

void init()
{
    int i,j;
    tes=0;
    memset(vis,0,sizeof(vis));
    for(i=2; i<MAXN; i++)
    {
        if(vis[i]==0)
        {
            for(j=i+i; j<MAXN; j+=i)
            {
                vis[j]=1;
            }
        }
    }
    tes=0;
    for(i=2; i<MAXN; i++)
    {
        if(vis[i]==0)   prime[tes++]=i;
    }
}

void get_num()
{
    int tot,i;
    cnt=tot=0;
    int t;
    for(i=0; ss[i]; i++)
    {
        if(ss[i]==' ')
        {
            str[tot]='\0';
            sscanf(str,"%d",&t);
            num[cnt++]=t;
            tot=0;
        }
        else str[tot++]=ss[i];
    }
}

bool cmp(Node a,Node b)
{
    return a.a>b.a;
}

int main()
{
    int i,ans,cas,flag,cot;
    init();
    while(gets(ss))
    {
        flag=0;
        if(ss[0]=='0') break;
        int len=strlen(ss);
        ss[len]=' ';
        ss[len+1]='\0';
        get_num();
        ans=1;
        for(i=0; i<cnt; i+=2)
        {
            ans*=pow(num[i],num[i+1]);
        }
        ans-=1;
        cot=0;
        for(i=0; i<tes; i++)
        {
            if(ans==1) break;
            if(ans%prime[i]==0)
            {
              rem[cot].a=prime[i];
            }
            cas=0;
            while(ans%prime[i]==0)
            {
                cas++;
                ans/=prime[i];
            }
            if(cas)  rem[cot++].b=cas;
        }
        sort(rem,rem+cot,cmp);
        for(i=0;i<cot;i++)
        {
            if(i==0)printf("%d %d",rem[i].a,rem[i].b);
            else printf(" %d %d",rem[i].a,rem[i].b);
        }
        printf("\n");


    }
    return 0;
}

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏算法修养

FZU Moon Game(几何)

Accept: 710    Submit: 2038 Time Limit: 1000 mSec    Memory Limit : 32768 KB  P...

34050
来自专栏ml

HDUOJ---------(1045)Fire Net

Fire Net Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (...

35250
来自专栏小樱的经验随笔

HDU 1012 u Calculate e【暴力打表,水】

u Calculate e Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3276...

29930
来自专栏机器学习与自然语言处理

POJ2488-A Knight's Journey(DFS+回溯)

题目链接:http://poj.org/problem?id=2488 A Knight's Journey Time Limit: 1000MS ...

25790
来自专栏小樱的经验随笔

UVA 11292 Dragon of Loowater(简单贪心)

Problem C: The Dragon of Loowater Once upon a time, in the Kingdom of Loowater, ...

28770
来自专栏ml

hdu----(5047)Sawtooth(大数相乘+数学推导)

Sawtooth Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (...

31750
来自专栏小樱的经验随笔

HDU 5144 NPY and shot(物理运动学+三分查找)

NPY and shot Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768...

29760
来自专栏菩提树下的杨过

mybatis3.2.8 与 hibernate4.3.6 混用

mybatis、hibernate这二个框架各有特色,对于复杂的查询,利用mybatis直接手写sql控制起来更灵活,而一般的insert/update,hib...

22960
来自专栏算法修养

CodeForces 25C(Floyed 最短路)

F - Roads in Berland Time Limit:2000MS     Memory Limit:262144KB     64bit IO...

25240
来自专栏数据结构与算法

POJ 3292 Semi-prime H-numbers

Description This problem is based on an exercise of David Hilbert, who pedagogi...

29540

扫码关注云+社区

领取腾讯云代金券