原创译文 | 区块链不仅仅是技术,而是新的经济体系

转载声明
本文为灯塔大数据原创内容,欢迎个人转载至朋友圈,其他机构转载请在文章开头标注:“转自:灯塔大数据;微信:DTbigdata”

导读:上一期了解了关于将AI应用到供应链中的法律问题的相关介绍,今天我们来了解一下关于区块链的相关内容(文末更多往期译文推荐)

暂时忘记您可能拥有或不拥有的加密货币的价值。不要把区块链看作是投资赌注,也不要把它看作是酷技术,而要把它看作是全新的、以前不可能实现的经济体系。因为这就是他们。

与任何经济体一样,区块链要求其设计者定义货币政策* (通货膨胀)、财政政策(区块规模)、税收(费用)、投票(治理/升级),并提供共同防御(保护网络)。然而,与传统经济不同,它们提供了更大的自由度和透明度的可能性,因为它们避免了集权和权力集中的问题。

这是个好消息。坏消息是,这些新兴经济体的风险极高。

具有讽刺意味的是,风险也是该技术最大的优势之一。正如Elad Verbin在他关于行为密码经济学的文章中所指出的,“从设计上讲,区块链系统一旦部署就很难改变。"

马克扎克伯格的标志性口头禅“快速行动,打破东西”在这里并不适用。如果区块链的开发人员没有从一个精心设计开始,他们很可能已经毁灭了他们的项目。这些系统的修理和改进是非常困难的。价值数十亿美元的协议可能在一夜之间消失。事情会变得非常激烈。需要证据吗?

还有…人们

仿佛设计一个没有缺陷的系统没有足够的压力,区块链创建者在开发这些新经济体时会面临另一大风险:准确预测人们的行为。

制定经济规则并将其编码在软件中是一回事(即“代码就是法律”)。但这些规则是基于对人们在经济中行为方式的预测——例如,他们将用于货币的价值或促使他们参与生态系统的激励水平。众所周知,这些预言很难实现。

看看我们每个人每天所做的一些决定。我们可能会投票赞成违背自己经济利益的政策。我们选择的食物与我们的身体健康不相符。我们的许多行为中没有明确的、可编码的逻辑。

实际上,整个领域的人们都在研究这种现象,包括诺贝尔奖获得者Daniel Kahneman和Amos Twersky以及芝加哥大学教授和前克林顿顾问Cass Sunstein(Nudge的作者)。Sunstein发现,将默认设置从“选择加入”改为“选择退出”,例如驾驶执照上的器官捐献和工作中的401k捐款,可以显着提高人们的认知度。

当然,一旦Sunstein发现了这一点,他只需与几个关键的中央机关分享这些发现,这些机关就能通过整个网络做出决定。他们不需要调查每个国家的公民,就可以获得批准更改驾驶执照注册流程。在这种情况下,协议的“分叉”是相对无痛的。

区块链系统设计师在实施变革方面面临的挑战比Sunstein更大。这使得对个人在给定情况下的行为的准确预测成为密码经济系统设计的绝对关键、不可协商的组成部分。事实上,大规模建立可持续的点对点价值转移系统是不太可能发生的。

这就是激励措施的来源。如果设计得当,他们可以鼓励人们(像Sunstein那样)以有益于网络发展的方式行事。

区块链领域的激励措施以数字令牌的形式出现。 这些令牌是网络的内部货币。 他们的感知价值对于让矿工积极保护网络安全非常重要(什么频率和什么难度获得多少块奖励足以激励他们?)以及帮助个人用户评估与备选网络相比他们从网络获得的收益。

获得正确的激励对于网络增长至关重要,这体现在令牌采用率的提高,从而产生积极的网络效应。一旦这个飞轮启动,它就成为未来发展的持续供资机制。没有信息技术,网络就无法实现自我维持。社区和令牌的价值在于激励新成员加入。如果没有这个价值,则新员工不会加入,死亡螺旋开始。

你可以看到为什么让这些激励措施恰到好处,充满风险。

还有很多东西需要学习

掌握密码令牌经济对于设计强健、可持续的区块链经济至关重要。它涉及多学科技能,包括机制设计、博弈论、行为经济学、公共政策、宏观经济学,以及对分散技术的正确理解。总有一天我们会有博士学位的密码令牌经济学领域顶尖大学的博士。然而,今天,全世界只有少数经验丰富的从业人员。正如Aleksandr Bulkin在一年前写的那样:“密码经济学很难。”这不是开玩笑。

如果不了解项目的象征性经济性,投资者、开发商和潜在的网络贡献者就无法评估分散网络的长期潜力。token与团队、技术、治理和社区一起构成了我用来评估项目成功可能性的关键“T3CG框架”的一部分。

虽然我对区块链系统的潜力感到兴奋,但我感到谦卑的是,我们才刚刚触及如何正确建立这一系统的表面。比如像Augur,Gnosis,Steem和Numeraire等那样依赖人类和他们理性行为倾向的区块链将面临比复杂的经济规则区块链更大的挑战。

可能最终会出现这样的情况,即2017年和2018年被大肆宣传的人力驱动区块链系统仅仅是未来加密标记经济学学生为了避免系统设计中的缺陷而要学习的案例研究。

我听到的一个常见问题是,“我们如何开始?“我想提出三点建议。

原文

Blockchains aren’t just tech, they’re new economic systems

Forget for a moment about the value of the cryptocurrencies that you may or may not own. Instead of thinking of blockchains as investment bets or just cool technology, think of them as entirely new, and previously impossible, economic systems. Because that’s what they are.

Just like any economy, a blockchain requires that its designers define monetary policy* (inflation), fiscal policy (block size), taxation (fees), voting (governance/upgrades), and provide for the common defense (securing the network). Yet, unlike traditional economies, they offer the possibility of greater freedom and transparency because they avoid the problems of centralization and concentration of power.

That’s the good news. The bad news is that these new economies comes with extremely high risk.

One of the risks, ironically, is also one of the technology’s greatest strengths. AsElad Verbin points out in his post on Behavioral Crypto-Economics, “Blockchain systems are, by design, difficult to change once deployed.”

Mark Zuckerberg’s hallmark mantra “move fast and break things” does not apply here. If blockchain developers don’t start from an extremely well thought out design, they may very likely have doomed their project. Repairs and improvements to these systems are famously difficult. Protocols with billion-dollar valuations could disappear overnight. Things can get very acrimonious. Want evidence?

Then there are … the people

As if designing a system without flaws weren’t enough pressure, blockchain creators face another big risk when developing these new economies: accurately predicting people’s behavior.

It is one thing to lay down the rules for an economy and encode them in software (i.e. “code is law”). But those rules are based on predictions of how people will behave in the economy — the value they will place on a currency or the level of incentive that will drive them to participate in the ecosystem, for example. And those predictions are notoriously hard to get right.

Just look at some of the decisions each of us make on a daily basis. We may vote for policies that go against our own economic interests. We make food selections that are at odds with our physical health. There’s no clear, codeable logic in much of our behavior.

In fact, an entire field of people study this very phenomenon, including Nobel laureates Daniel Kahneman and Amos Twersky as well as University of Chicago professor and former Clinton advisor Cass Sunstein (author of Nudge). It was Sunstein who discovered that changing the default setting from “opt-in” to “opt-out” on things such as organ donation on a driver’s license and 401k contributions at work could dramatically improve uptake.

Of course, once Sunstein discovered this, he only had to share the findings with a few, key central authorities who were able to institute the decision across the entire network. They did not need to poll every citizen in a state to get approval to change the Driver’s License registration process. The “fork” of the protocol, in this case, was relatively painless.

Blockchain system designers face greater challenges than Sunstein in implementing changes.

This makes the accurate prediction of how individuals will behave in a given situation an absolutely critical, non-negotiable, component to crypto-economic system design. In fact, creating sustainable peer-to-peer value transfer systems at scale is simply unlikely to happen otherwise.

And this is where incentives come in. Properly designed, they can encourage people (like Sunstein did) to behave in desirable ways that benefit and grow the network.

Incentives, in blockchain land, come in the form of digital tokens. These tokens are the internal currency of the network. Their perceived value is important in keeping miners active in securing the network (what amount of block reward at what frequency and with what difficulty is enough to motivate them?) as well as in helping individual users assess the benefits they get from the network compared to alternative networks.

Getting incentives right is fundamental to network growth, reflected in increased token adoption that yields positive network effects. Once this flywheel gets started, it serves as the ongoing funding mechanism for future development. Without it, the network cannot achieve self-sustainability. The value of the community and the token is what incentivizes new members to join. If that value is off, new people don’t join and a death spiral begins.

You can see why getting those incentives just right it is so fraught with risk.

There’s still a lot to learn

A mastery of crypto-token economics is critical to the design of robust, sustainable blockchain economies. It involves multi-disciplinary skills, includingmechanism design, game theory, behavioral economics, public policy, macro-economics, and a decent understanding of decentralized technology. The day will come when we have Ph.Ds emerging from top universities in the field of crypto-token economics. Today, however, there are only a handful of experienced practitioners in the entire world. As Aleksandr Bulkin wrote over a year ago– “Cryptoeconomics is hard.” No joke.

Without understanding the token economics of a project, investors, developers, and potential network contributors have no way to assess the long-term potential of a decentralized network. Along with team, technology, governance, and community, “token” forms part of the critical “T3CG Framework” I use to assess the likelihood of project success.

As excited as I am about the potential of blockchain systems, I am humbled by the realization that we have only just scratched the surface on how to build this systems properly. Blockchains that depend a lot on humans and their propensity to behave rationally — such as Augur, Gnosis, Steem, and Numeraire, for example — will face bigger challenges than blockchains with less complex economic rules, such as Bitcoin.

It may end up being the case that the super-hyped, human-powered blockchain systems of 2017 and 2018 are merely the case studies that future students of crypto-token economics will study to avoid flaws in system design.

文章编辑:天天

本文分享自微信公众号 - 灯塔大数据(DTbigdata)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-04-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏区块链空投

金羊毛ECT(SuperEdge)全方位深入分析:霸榜多日,超越nep,ECT究竟是何方神圣?

ECT(SuperEdge)是这几天各个羊毛群里的焦点,能够做到团队给力、推特每日更新、官网简洁而有内涵、白皮书详实的新币,在空投币里的确不多见。撸毛狂魔在这里...

56110
来自专栏京东技术

【组图】11.11前夕被撞见京东秘密武器进入某机房!

今天,老湿刷着朋友圈,被一条消息震精了,11.11前夕,有人拍到有貌似钢铁匣样的大量神秘箱体。 ? 老湿最近变身《白夜追凶》萌妹,必须安排外围狗仔队尾随这些神秘...

33550
来自专栏罗超频道

手机防盗,科技能为我们做些什么

罗超为纽约时报中文网撰稿 2013年05月18日 朋友前段时间在北京地铁上弄丢了她的iPhone,疑似被盗。第一时间便到附近派出所报案。警察并没有因为她的心急...

37950
来自专栏镁客网

我有马良笔,世界皆画布!

17620
来自专栏ATYUN订阅号

格拉斯哥大学研究者开发电子皮肤,为机器人提供触摸能力

合成的电子皮肤,也被称为“brainy skin”,正在开发中,不仅可以为截肢者制作更具响应性的假肢,它也可以应用于机器人,使其具有模拟触摸能力。

8910
来自专栏BestSDK

龙芯CPU将开源,全民挑战英特尔?

开源的CPU核性能如何? 目前,除了龙芯、申威、飞腾等老牌设计单位拥有自己设计的高性能CPU核之外,国内大多数IC设计公司依旧处于购买国外的IP“攒”出一个SO...

398100
来自专栏知晓程序

小程序上新!我们选了 10 款超实用的,你一定用得上 | 晓榜 #33

知晓程序(微信号 zxcx0101)第一时间采访了这个小程序的开发团队。测试到底准不准?点击这里,看看开发者怎么说。

15930
来自专栏大数据文摘

当航线、就业、保险的数据分析过程遇上可视化

26530
来自专栏大数据文摘

首届开放科学奖|6个创造性案例示范如何玩转医学大数据

15050
来自专栏腾讯数据中心

大道至简,图解大型互联网数据中心典型模型

数据中心本质上是数学和逻辑的组合,分析模块化数据中心的颗粒度可以归纳演绎出其典型模型,本文介绍一些大型互联网数据中心的典型案例,正是为了做此方面的分析。 大型互...

45260

扫码关注云+社区

领取腾讯云代金券