《深度学习Ng》课程学习笔记03week2——机器学习(ML)策略(2)

http://blog.csdn.net/u011239443/article/details/78132697

2.1 进行误差分析

标注错误:

2.2 清楚标注错误的数据

纠正错误 dev / test 数据集的方法:

2.3 快速搭建你的第一个系统,并进行迭代

尽快的搭建你的第一个系统。

2.4 在不同的划分上进行训练并测试

对于不同来源的数据,最佳方案可能并不是将其混合。如,我们最终需要预测的数据来自于app,那么 dev / test 数据集应该也要来自于 app。option 2 会是更好的选择:

2.5 不匹配数据划分的偏差和方差

对于三个不同的问题(不匹配数据或者说数据不是相同分布,偏差和方差),我们有不同的策略。为了判断是那种问题,我将 train 和 dev 的合并称为 training-dev,根据人类误差和不同数据集下的误差来判断是什么问题:

总结来说:

2.6 定位数据不匹配

如:

2.7 迁移学习

总结:

2.8 多任务学习

当label向量中的某项y不存在,则不计算该项的交叉熵损失。

多任务学习的适用情况:

左边的是迁移学习的数据情况,右边的多任务学习的。

2.9 什么是端到端的深度学习

例如:

2.10 是否要使用端到端的深度学习

端到端的深度学习的优缺点:

使用端到端的深度学习需要注意的地方:

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏深度学习

深度学习性能提升的诀窍

一、克服过拟合和提高泛化能力的20条技巧和诀窍 你是如何提升深度学习模型的效果?  这是我经常被问到的一个问题。  有时候也会换一种问法:  我该如何提高模型的...

52960
来自专栏程序你好

使用Keras的深度学习:经验教训

如果您计划尝试深度学习模型,那么Keras可能是一个很好的起点。它是用Python编写的高级API,后端支持Tensorflow、CNTK和Theano。

11620
来自专栏吉浦迅科技

不要蓝瘦香菇,传你几招深度学习性能提升的诀窍吧!

原文: How To Improve Deep Learning Performance 作者: Jason Brownlee 翻译: KK4SBB ...

36740
来自专栏机器人网

自动驾驶技术中的机器学习算法有哪些?

如今,机器学习算法正大规模地用于解决自动驾驶汽车产业日益增多的问题。结合 ECU (电子控制单元)传感器数据,我们须加强对机器学习方法的利用以迎接新的挑战。潜在...

10720
来自专栏机器之心

业界 | 从集成方法到神经网络:自动驾驶技术中的机器学习算法有哪些?

选自kdnuggets 作者:Savaram Ravindra等 参与:Lj Linjing、蒋思源 机器学习算法可以融合来自车体内外不同传感器的数据,从而评估...

28360
来自专栏机器之心

学界 | CMU、NYU与FAIR共同提出GLoMo:迁移学习新范式

深度学习的最新进展很大程度上依赖于诸如卷积网络(CNN)[ 18 ] 和循环网络(RNN)[ 14 ] 之类的架构及注意力机制 [ 1 ]。这些架构虽然具有较高...

13800
来自专栏机器之心

教程 | 详解支持向量机SVM:快速可靠的分类算法

选自Monkey Learn 作者:Bruno Stecanella 参与:李泽南、李亚洲 当处理文本分类问题时,你需要不断提炼自己的数据集,甚至会尝试使用朴素...

556100
来自专栏新智元

【干货指南】机器学习必须需要大量数据?小数据集也能有大价值!

深度学习往往需要大量数据,不然就会出现过度拟合,本文作者提出了一些在文本数据量不够大的时候可用的一些实用方法,从而赋予小数据集以价值。

16440
来自专栏专知

【干货】模仿人类的印象机制,商汤提出精确实时的视频目标检测方法

【导读】最近,针对视频目标检测中速度精度难以两全的问题,来自商汤科技(SenseTime)的学者发表论文提出一个新的概念——印象网络,其体现出了自然高效的特征聚...

43860
来自专栏机器之心

ICASSP 2018 | 思必驰和上交大提出口语语义理解新方法:基于对抗多任务学习的半监督训练

机器之心专栏 作者:Ouyu Lan, Su Zhu, Kai Yu 为期 5 天 ICASSP 2018,已于当地时间 4 月 20 日在加拿大卡尔加里(Ca...

36560

扫码关注云+社区

领取腾讯云代金券