【观点】面对大数据过分渲染宣传,你需要了解的9件事

昨天和今天我参加了俄亥俄州立大学的“大数据未来研讨会”。俄亥俄州正在与IBM公司合作在当地创建一个大数据中心,逐渐成为该领域的一个重要学术力量。本次研讨会汇聚了来自全国各地的专家和一名来自英国的专家,就该领域当前的成就、趋势和话题进行一次卓有成效的探讨。很遗憾我没能参加今天下午的展示会,但大家可以在会议官网和即将出版的《信息社会的法律和政策》杂志(AJournalofLawandPolicyfortheInformationSociety)上了解更多详情。 大数据和开放数据不是一回事,但他们有着密切的联系(正如我在主题发言稿“未来的大数据将会开放到什么程度?”上写到的)。我们正在关注的大数据一些趋势和话题与开放数据也有关系。按照这样的脉络,就出炉了这篇我在去哥伦布的路上学到的《了解大数据的九件事》。在研讨会的官网上可以看到我用黑体标注的人们的名字。 为大数据的激烈反应做好准备。很多演讲者提到了“大数据过分渲染宣传”的话题,认为大数据被讨论得如此热烈,以至于我们现在可以进入一个反应性的循环。MikeNelson对他在公开场合看到的逐渐出现的“垃圾数据”提出了责难,甚至建议我们应该重新命名大数据,它可以有一个“大兄弟”–就像很多人一样。他建议改名为:BFFMUDD,是大(Big)、肥(Fat)、快(Fast)、乱(Messy)、非结构化(Unstructured)、分布式数据(DistributedData)的缩写。 意识到“大数据的狂妄自大”。好几位演讲者引用了一份新报告,报告显示,“Google流感趋势”–大数据预测价值的首批大范例之一–被证明非常不准确。显然,Google可能自作聪明地以一种错误的方式调整了其算法。不管什么样的错误,这都是个教训,表明如果不着眼于更广阔的图景,而只是试图通过碾碎数据来发现真相,通常情况下无法获得预期效果。 数据不能代替判断。数据,尤其大数据是可以帮助人类做出决策的工具,但不能起到代替的作用。RayHarishankar是这样说的:“数据加上分析是信息,信息加上语境可以提供洞察力,洞察力必定能导向正确的行动,正确的行动则带来提升价值的结果”。 相关关系不能强过理论。一些大数据的倡导者认为大数据几乎让理论变得多余:他们说,有了足够的数据,即使没有理论说明其原因,我们也可以发现很多重要和有益的模式和趋势。确实,简单的相关关系在一定程度上就可以驱动精确的预测。但即便是具备预测分析的能力,也并不意味着你就能真正地理解你正在研习的系统是如何运行的。EytanAdar建议我们审视大数据范围从预测性到解释性的所有相关努力,并且更多地关注如何理解我们所看到的东西,而不是仅仅关注可预测未来的模式。 大数据正在-冒着风险–追踪一个“移动” 社会。在全球范围,移动设备都已经成为人类的首选在线连接工具。FarnamJahanian指出到2015年全球移动设备的数量将是人口数量的两倍,所有的设备都可以发送位置信息和其它数据给能够收集这些数据的公司。这将成为未来社会大数据的主要来源之一。但KateCrawford?指出了这里的隐私风险:由于人类移动行为模式的独特性,你可以仅用3-4个手机生成的数据点就能识别一个人。 大数据能帮助–或者损害城市的民主体制。正如HarveyMiller所说,通过手机数据、远程环境感应器、激光生成的航空地图和更多工具来追踪城市活动的能力,可以给我们创造拥有更高代谢功能的超级协调城市。(遗憾的是,我不得不在MichaelBatty关于城市分析的主题演讲之前离开,不过他在个人网站上提供了演讲内容)但是,KateCrawford在这里再次提出了警告。如果我们不小心,城市数据收集就会不对称地帮助富人而伤害穷人。比如,波士顿的StreetBumpAPP应用通过追踪智能手机的摆动状态来收集坑洼里的数据,用志愿者的数据来反映一条道路的颠簸不平。但大多数智能手机的拥有者都属于生活富裕的人群,以至于最初是在更富有的地区监测和修复坑洼–这是StreetBump目前正在致力于修正的难题。在相反的另一面,“预测监控”正在被用于将警察管制实施于预测将会有高犯罪率的地区,这将导致歧视性的执法。 隐私仍然事关要紧。忘掉那些宣称公众,尤其是年轻人已经放弃隐私的报告吧。我们仍然关心隐私问题,只是不知道该怎么做。这里有两个考虑因素:我们想知道政府机构或数据跟踪公司收集到了哪些关于我们的数据信息,以及如果我们不喜欢,则想让他们停止收集。关于如何解决这些考虑因素还不是很清晰。会上的一些发言者建议采用简单的解决方案:让政府和公司对它们正在收集的数据更公开透明,这是一些人称之为“互相确认的公开”的方法。但是一个长期的透明度倡导者GaryBass说,这个建议的解决方案“不是真实的世界。在过去的30年里,我拼命地斗争让数据变得可获取,而政府和公司则拼命地让数据不可获取……这是一场旷日持久的斗争”。正如其他人所说,这里的风险在于我们可能增强了数据收集者和被收集者之间的力量不对称性。 大数据应当展现数据之美。数据可视化方面的迅速进步正在创造一些美轮美奂的效果。比如,看一看这部“体验自行车人流”的视频,逐渐解析伦敦自行车交通的数据,展示俄亥俄州超级计算机中心最清晰的模式和部分已经完成的可视化作品。类似这样的数据可视化并不仅仅关乎美学,而是与理解息息相关。IBM公司的一位数据可视化专家AngelaShen-Hsieh谈到人们需要使数据更加“适合人类消费”,以及关注从计算机屏幕到人脑的信息传递旅程中的“最后18英寸”。 大数据将(很有可能)产生大价值。抛开所有的警告不管,大数据中有很多社会价值和经济价值可以发掘。麦肯锡几年前一份具有里程碑意义的大数据报告预测它将撬动数万亿美元的经济价值。这项研究的联合作者,微软公司的AngelaByers?今天说到,也许仍需要5-10年时间才能产生这样的价值,部分原因是我们仍然面临一个重要的技能鸿沟:即可获得的数据数量和清楚如何利用这些数据的人的数量之间存在的差距。但是经济价值正在逐步显现,并且以某种令人惊异的方式呈现。JohanBollen和他的团队成员运用Twitter上的大数据情感分析来预测股票市场:他们计算Twitter上的“镇静”情绪来预测道琼斯指数三天后的收盘点位。

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2014-05-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏镁客网

人工智能行业应用之:为办公场景提供新思路

2426
来自专栏数据的力量

情感分析:商业领域的下一个重大潮流

1893
来自专栏腾讯大讲堂的专栏

什么是「好产品」?

大约1年前,我所在的部门和某互联网社区合作发起了一轮招聘,目标是产品经理,我是这轮招聘的面试官之一。当时在网站上提了一些问题作为「笔试题」,用来对候选人做第一轮...

3045
来自专栏钱塘大数据

【干货】几张图看懂高级经理人与普通管理者的区别

德鲁克曾经说过,管理者必须卓有成效。管理者是否卓有成效的根本原因不在于学历、不在于年龄、也不在于参加了多少大牌的领导力课程,更重要的是在于管理思考问题的方式。我...

732
来自专栏镁客网

阿里飞猪大数据杀熟冤不冤?我们做了这个实验

近日,作家王小山通过微博爆料称遭遇飞猪大数据杀熟。他表示,自己前几天在飞猪购买了利马到布宜诺斯艾利斯的机票,同一个航班,其他平台票价为2500,飞猪的价格却为3...

1233
来自专栏镁客网

哈佛将研究能够赶上人脑的人工智能系统

1246
来自专栏大数据文摘

百度神秘智能音箱发布,Diss市面现有产品“都是卷纸垃圾桶”

1584
来自专栏华章科技

CTO不写代码,真的可以吗?

导读:CTO 在公司里是干嘛的?到底写不写代码?该不该做代码评审(Code Review),亲力亲为给程序员做出榜样?还是把握一下大方向,设计架构,管管程序员,...

1494
来自专栏罗超频道

科技公司要干掉专业媒体?先迈过内容这道大坎

2017年新年伊始,雅虎门户业务正式出售给了美国运营商Verizon,曾经的门户始祖今天凄惨卖身,宣告了门户时代的正式结束。这样的现象同时在中国上演,门户进一步...

2837
来自专栏AI科技大本营的专栏

百度吐槽友商的音箱像卷纸、垃圾桶、保温杯后…发布了一个彩色积木,1699元你买吗?

整理 | 晶晶 Donna SuiLing 张明明 编辑 | 鸽子 千呼万唤使出来,小白盒子终揭面。2017世界百度大会今日在北京如期而至。不出所料,百度今天...

4046

扫码关注云+社区

领取腾讯云代金券