专栏首页PPV课数据科学社区【学习】SPSS聚类分析全过程

【学习】SPSS聚类分析全过程

案例数据源:

有20种12盎司啤酒成分和价格的数据,变量包括啤酒名称、热量、钠含量、酒精含量、价格。数据来自《SPSS for Windows 统计分析》data11-03。数据源下载地址http://ishare.iask.sina.com.cn/f/13773532.html

【一】问题一:选择那些变量进行聚类?——采用“R型聚类”

1、现在我们有4个变量用来对啤酒分类,是否有必要将4个变量都纳入作为分类变量呢?热量、钠含量、酒精含量这3个指标是要通过化验员的辛苦努力来测定,而且还有花费不少成本,如果都纳入分析的话,岂不太麻烦太浪费?所以,有必要对4个变量进行降维处理,这里采用spss R型聚类(变量聚类),对4个变量进行降维处理。输出“相似性矩阵”有助于我们理解降维的过程。

2、4个分类变量量纲各自不同,这一次我们先确定用相似性来测度,度量标准选用pearson系数,聚类方法选最远元素,此时,涉及到相关,4个变量可不用标准化处理,将来的相似性矩阵里的数字为相关系数。若果有某两个变量的相关系数接近1或-1,说明两个变量可互相替代。

3、只输出“树状图”就可以了,个人觉得冰柱图很复杂,看起来没有树状图清晰明了。从proximity matrix表中可以看出热量和酒精含量两个变量相关系数0.903,最大,二者选其一即可,没有必要都作为聚类变量,导致成本增加。至于热量和酒精含量选择哪一个作为典型指标来代替原来的两个变量,可以根据专业知识或测定的难易程度决定。(与因子分析不同,是完全踢掉其中一个变量以达到降维的目的。)这里选用酒精含量,至此,确定出用于聚类的变量为:酒精含量,钠含量,价格。

【二】问题二:20中啤酒能分为几类?——采用“Q型聚类”

1、现在开始对20中啤酒进行聚类。开始不确定应该分为几类,暂时用一个3-5类范围来试探。Q型聚类要求量纲相同,所以我们需要对数据标准化,这一回用欧式距离平方进行测度。

2、主要通过树状图和冰柱图来理解类别。最终是分为4类还是3类,这是个复杂的过程,需要专业知识和最初的目的来识别。我这里试着确定分为4类。选择“保存”,则在数据区域内会自动生成聚类结果。

【三】问题三:用于聚类的变量对聚类过程、结果又贡献么,有用么?——采用“单因素方差分析”

1、聚类分析除了对类别的确定需讨论外,还有一个比较关键的问题就是分类变量到底对聚类有没有作用有没有贡献,如果有个别变量对分类没有作用的话,应该剔除。

2、这个过程一般用单因素方差分析来判断。注意此时,因子变量选择聚为4类的结果,而将三个聚类变量作为因变量处理。方差分析结果显示,三个聚类变量sig值均极显著,我们用于分类的3个变量对分类有作用,可以使用,作为聚类变量是比较合理的。

【四】问题四:聚类结果的解释?——采用”均值比较描述统计“

1、聚类分析最后一步,也是最为困难的就是对分出的各类进行定义解释,描述各类的特征,即各类别特征描述。这需要专业知识作为基础并结合分析目的才能得出。

2、我们可以采用spss的means均值比较过程,或者excel的透视表功能对各类的各个指标进行描述。其中,report报表用于描述聚类结果。对各类指标的比较来初步定义类别,主要根据专业知识来判定。这里到此为止。

以上过程涉及到spss层次聚类中的Q型聚类和R型聚类,单因素方差分析,means过程等,是一个很不错的多种分析方法联合使用的案例。

本文分享自微信公众号 - PPV课数据科学社区(ppvke123)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2014-04-22

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 人人都能读懂的无监督学习:什么是聚类和降维?

    可以说机器学习已经成为了改变时代的大事,一时间似乎人人都应该懂一点机器学习。但机器学习涉及到的数学知识和编程能力往往让没有相关经验的人望而却步。YupTechn...

    小莹莹
  • 【机器学习】确定最佳聚类数目的10种方法

    在聚类分析的时候确定最佳聚类数目是一个很重要的问题,比如kmeans函数就要你提供聚类数目这个参数,总不能两眼一抹黑乱填一个吧。之前也被这个问题困扰过,看了很多...

    小莹莹
  • 【学习】SPSS聚类分析:用于筛选聚类变量的一套方法

    聚类分析是常见的数据分析方法之一,主要用于市场细分、用户细分等领域。利用SPSS进行聚类分析时,用于参与聚类的变量决定了聚类的结果,无关变量有时会引起严重的错分...

    小莹莹
  • 聚类算法之层次聚类

    层次聚类(Hierarchical Clustering)是聚类算法的一种,通过计算不同类别的相似度类创建一个有层次的嵌套的树。

    Ewdager
  • 推荐|数据科学家需要了解的5大聚类算法

    IT派 - {技术青年圈} 持续关注互联网、大数据、人工智能领域 聚类是一种涉及数据点分组的机器学习技术。给定一个数据点集,则可利用聚类算法将每个数据点分类...

    IT派
  • R语言从入门到精通:Day15(聚类分析)

    聚类分析是一种数据归约技术,旨在揭露一个数据集中观测值的子集。它可以把大量的观测值归约为若干个类。

    用户6317549
  • 笔记︱多种常见聚类模型以及分群质量评估(聚类注意事项、使用技巧)

    版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! htt...

    素质
  • R语言之实现K-mean聚类算法

    聚类算法作为无监督的学习方法,在不给出Y的情况下对所有的样本进行聚类。以动态聚类为基础的K均值聚类方法是其中最简单而又有深度的一种方法。K均值的好处是我们可以在...

    一粒沙
  • 小孩都看得懂的聚类

    本文是「小孩都看得懂」系列的第四篇,本系列的特点是没有公式,没有代码,只有图画,只有故事。内容不长,碎片时间完全可以看完,但我背后付出的心血却不少。喜欢就好!

    用户5753894
  • 机器学习20:聚类(k-means模型、高斯混合聚类模型)

    在无监督学习中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据内在的性质及规律,其中,应用最广的是聚类算法。

    用户5473628

扫码关注云+社区

领取腾讯云代金券