技术宅如何躲开大数据?解析人脸识别技术实现方式

头部向肩膀左右倾斜15度以上就能躲过人脸识别系统是真的吗?

人脸检测只是人脸识别系统中的一步,当然是非常重要的一步;反人脸检测(躲开人脸检测)也只是反人脸识别的一种手段,在特定场景下是奏效的,但“头部左右倾斜15度以上”的“伎俩”是达不到这效果的,为什么呢?是否有更有效的方法呢?我们来探讨一下:

1、人脸识别的一般过程

首先,我们需要了解人脸识别的一般过程,如图2:

图2. 人脸识别一般过程

可以看出,人脸检测是入口,检测失败则后续识别无从谈起;人脸检测一般也包括了人脸关键点检测(Facial Landmark Detection),检测成功后的预处理是根据人脸关键点将人脸摆正、对齐,将人脸图像规定在只包含五官的部分,当然也可能包含对光照的处理;识别过程则类似一般图像(模式)分类,大体是提取某种特征(用于表示人脸图像的数学向量,是对人脸图像进行特定的运算获得,如获得矩阵特征值即为一种方法),选择某种分类方法(传统神经网络及DeepLearning方法与此有别)。

那么,影响人脸识别的因素实际上可包含影响人脸检测的因素和影响特征提取的因素:

影响人脸检测的因素有:光照、人脸姿态、遮挡程度;

影响特征提取的因素有:光照、年龄、表情、遮挡程度。

所以,反人脸检测是反人脸识别最直观的方法,题主所引用VEDO中用到的反人脸检测 的方法莫过于从影响人脸检测的因素及人脸检测原理入手,这里留在下一节讲。

同样的道理,破坏影响特征提取的因素在理论上也是可以达到反人脸识别的效果。

2、人脸检测及反人脸检测

2.1 人脸检测

目前流行的人脸检测方法多源自Viola–Jones object detection framework( Viola ),这里并不打算描述该过程,OpenCV Face Detection: Visualized(自备梯子)非常直观地展现了这一过程。

基本上,了解了该算法,使用OpenCV自带的分类器,便可实现正脸的检测;但对于图像中人脸的其他姿态,则有较高的漏检率,这也就是为何题主及其引文将场景设为“头部左右倾斜15度以上”,其实还可以为“头部向下俯或向上仰15度以上”或“头部向左或向右偏15度以上”,只不过“头部左右倾斜15度以上”伪装或躲避镜头的意图不算太明显而已。

人脸在空间中的旋转有三种,即绕水平轴旋转(俯仰)、绕垂直轴旋转(摇摆)和绕视平面法向轴旋转(倾斜),如图3所示:

图3. 人脸在空间中的旋转

也即roll, yaw, pitch,注意图1结果中的红框,对应如图4:

图4. 人脸在空间中的旋转

也就是说,完善的人脸检测算法,是要适应一定多视角的,如考虑的姿态范围为摇摆[-90°, +90°],倾斜[-45°, +45°]和俯仰[-20°, +20°]。更多的结果如下:

图5. Multi-View Face Detection

图6. Face

图7. CNN for Facial Point Detection

2.2 反人脸检测

了解了人脸检测的原理及影响人脸检测的因素,反人脸检测似乎有头绪了,当我们只是产生了这些念头的时候,有人已经实验多时。

A、基于VJ人脸检测原理的反人脸检测

[2.1]中将VJ人脸检测可视化的同学 Adam Harvey 做了这个实验, 前期的实验 主要是寻找一种可行的遮挡模式:

第二阶段的实验 是对遮掩层的精化( Project ):

反人脸检测的动态过程见 CV Dazzle: ITP Thesis Demo Look #1 (after) from Adam Harvey on Vimeo .Adam Harvey在facebook.com所用的phototagger上的测试见 CV Dazzle vs PhotoTagger from Adam Harvey on Vimeo .

B、基于光照干扰因素的反人脸识别

日本东京国立信息研究院教授ISAO ECHIZEN研发出了世界首款反面部识别的眼镜,通过眼镜上的11组近红外环形灯,可以完美阻止被摄像头的面部识别程序抓取信息。

图8. Execution of face detection Research projects

3、针对特征提取的反人脸识别

特征提取方法繁多,要在这个层面上达到反人脸识别,似乎难以做到,除非获知该识别系统可能使用的特征提取方法,即便如此,鲁棒的特征应该具备一定的不变性,比如光照、年龄、噪声等的影响,要做到破坏性,需具备一定的专业水准。

如果不想去推测或遍历当前流行的人脸特征算法,那么在这个层面上要做到反人脸识别,目前我只能不负责任地举出这个栗子: [视频]能骗过面部识别的人脸面具

4、总结

人脸识别的广泛应用,势必对民众的隐私造成一定的影响,这也是Google及Facebook尚未在其SNS系统中公开使用该技术的原因之一。对于大街小巷星罗棋布的监控设备,你我的身影或行迹总会不知不觉地记录在某块硬盘的扇区,尽管2013年波士頓馬拉松爆炸案等事件表明目前的技术并不像 鹰眼 (豆瓣) 中描述的那样神乎其乎,但做为想像成为拯救无辜人类的化身的技术宅,自然是要事先发起反击战–反人脸识别。

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2014-07-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

深度 | Ian Goodfellow AIWTB开发者大会演讲:对抗样本与差分隐私

机器之心整理 演讲者:Ian Goodfellow 参与:吴攀、李亚洲 面向开发者的世界上最大的人工智能主题在线演讲与对话大会 AI WITH THE BEST...

46580
来自专栏大数据文摘

Yann LeCun说是时候放弃概率论了,因果关系才是理解世界的基石

21440
来自专栏云社区全球资讯抢先看

新的算法将一键修复损坏的数字图像

技术可以使用人工神经网络的力量来一次处理单个图像中的多种类型的图像噪点和图像模糊。

19620
来自专栏新智元

Science重磅!用光速实现深度学习,跟GPU说再见

深度学习对算力的需求没有止境,但受制于能耗和物理极限,基于硅基的电子元件虽然现在还能支撑,但远处那堵几乎不可逾越的高墙已然显现。

25030
来自专栏量化投资与机器学习

【必看】机器学习应用量化投资必须要踩的那些坑(系列55)

28450
来自专栏新智元

从神经科学到计算机视觉:人类与计算机视觉五十年回顾

【新智元导读】本文简单的介绍了神经网络近50年的发展历程,从1968年的Hubel和Wiesel开展的猫实验,一直到李飞飞教授等人的成果。从本质上讲解了人工神经...

34650
来自专栏大数据文摘

案例:火场中消防员的姿态与动作识别

35660
来自专栏华章科技

PM2.5这个锅背的值吗?数据科学家建模给你论证下

当看到诸如“我们都在等待第一批死在北京的人”等一些耸人听闻的新闻标题时,我真的很想知道,近年来北京的空气质量到底是有所改善还是逐步恶化?

8330
来自专栏量子位

连LeCun都推荐的Fashion-MNIST数据集,是这位华人博士的成果

允中 发自 凹非寺 量子位 报道 | 公众号 QbitAI 上周六,量子位在报道中提到德国时尚圈的科学家,推出一个名叫Fashion-MNIST的数据集。这个数...

43950
来自专栏PPV课数据科学社区

【译文】统计建模的24种应用(上)

在这里,我们讨论统计模型的一般应用情况。不管他们是否源自数据科学,运筹学,工程学,机器学习或统计学,如决策树,logistic回归,贝叶斯模型,马尔可夫模型,数...

34240

扫码关注云+社区

领取腾讯云代金券