【学习】LinkedIn大数据专家深度解读日志的意义(二)

第二部分:数据集成

  请让我首先解释 一下“数据集成”是什么意思,还有为什么我觉得它很重要,之后我们再来看看它和日志有什么关系。

数据集成就是将数据组织起来,使得在与其有关的服务和系统中可以访问它们。“数据集成”(data integration)这个短语应该不止这么简单,但是我找不到一个更好的解释。而更常见的术语 ETL 通常只是覆盖了数据集成的一个有限子集(译注:ETL,Extraction-Transformation-Loading的缩写,即数据提取、转换和加载)——相对于关系型数据仓库。但我描述的东西很大程度上可以理解为,将ETL推广至实时系统和处理流程。

  你一定不会听到数据集成就兴趣盎然屏住呼吸,并且天花乱坠的想到关于大数据的概念,不过,我相信世俗的问题“让数据可被访问” 是一个组织应该关注的有价值的事情。

对数据的高效使用遵循一种马斯洛的需要层次理论 。金字塔的基础部分包括捕获所有相关数据,能够将它们全部放到适当的处理环境(那个环境应该是一个奇妙的实时查询系统,或者仅仅是文本文件和python 脚本)。这些数据需要以统一的方式建模,这样就可以方便读取和数据处理。如果这种以统一的方式捕获数据的基本需求得到满足,那么就可以在基础设施上以若干种方法处理这些数据——映射化简(MapReduce),实时查询系统,等等。

  很明显,有一点值得注意:如果没有可靠的、完整的数据流,Hadoop集群除了象昂贵的且难于安装的空间取暖器哪样外不会做更多事情了。一旦数据和处理可用,人们就会关心良好数据模型和一致地易于理解的语法哪些更细致的问题。最后,人们才会关注更加高级的处理——更好的可视化、报表以及处理和预测算法。

  以我的经验,大多数机构在数据金字塔的底部存在巨大的漏洞——它们缺乏可靠的、完整的数据流——而是打算直接跳到高级数据模型技术上。这样做完全是反着来做的。

  因此,问题是我们如何构建通过机构内所有数据系统的可靠的数据流。

 数据集成:两个并发症

  两种趋势使数据集成变得更困难。

事件数据管道

  第一个趋势是增长的事件数据(event data)。事件数据记录的是发生的事情,而不是存在的东西。在web系统中,这就意味着用户活动日志,还有为了可靠的操作以及监控数据中心的机器的目的,所需要记录的机器级别的事件和统计数字。人们倾向称它们为“日志数据”,因为它们经常被写到应用的日志中,但是这混淆了形式与功能。这种数据位于现代web的中心:归根结底,Google的资产是由这样一些建立在点击和映像基础之上的相关管道所生成的——那也就是事件。

  这些东西并不是仅限于网络公司,只是网络公司已经完全数字化,所以它们更容易用设备记录。财务数据一直是面向事件的。RFID(无线射频识别)将这种跟踪能力赋予物理对象。我认为这种趋势仍将继续,伴随着这个过程的是传统商务活动的数字化。

  这种类型的事件数据记录下发生的事情,而且往往比传统数据库应用要大好几个数量级。这对于处理提出了重大挑战。

 专门的数据系统的爆发

  第二个趋势来自于专门的数据系统的爆发,通常这些数据系统在最近的五年中开始变得流行,并且可以免费获得。专门的数据系统是为OLAP,搜索, 简单在线存储, 批处理, 图像分析,等等而存在的。

  更多的不同类型数据的组合,以及将这些数据存放到更多的系统中的愿望,导致了一个巨大的数据集成问题。

日志结构数据流

  为了处理系统之间的数据流,日志是最自然的数据结构。其中的秘诀很简单:

  将所有组织的数据提取出来,并将它们放到一个中心日志,以便实时查阅。

  每个逻辑数据源都可以建模为它自己的日志。一个数据源可以是一个应用程序的事件日志(如点击量或者页面浏览量),或者是一个接受修改的数据库表。每个订阅消息的系统都尽可能快的从日志读取信息,将每条新的记录保存到自己的存储,并且提升其在日志中的地位。订阅方可以是任意一种数据系统 —— 一个缓存,Hadoop,另一个网站中的另一个数据库,一个搜索系统,等等。

  例如,日志针对每个更改给出了逻辑时钟的概念,这样所有的订阅方都可以被测量。推导不同的订阅系统的状态也因此变得相对简单的多,因为每个系统都有一个读取动作的“时间点”。

  为了让这个显得更具体,我们考虑一个简单的案例,有一个数据库和一组缓存服务器集群。日志提供了一种同步更新所有这些系统,并推导出每一个系统的接触时间点的方法。我们假设写了一条日志X,然后需要从缓存做一次读取。如果我们想保证看到的不是陈旧的数据,我们只需保证没有从任何尚未复制X的缓存中读取即可。

  日志也起到缓存的作用,使数据生产与数据消费相同步。由于许多原因这个功能很重要,特别是在多个订阅方消费数据的速度各不相同的时候。这意味着一个订阅数据系统可以宕机,或者下线维护,之后重新上线以后再赶上来:订阅方按照自己控制的节拍来消费数据。批处理系统,如Hadoop或者是一个数据仓库,或许只是每小时或者每天消费一次数据,而实时查询系统可能需要及时到秒。由于无论是原始数据源还是日志,都没有各种目标数据系统的相关知识,因此消费方系统可以被添加和删除,而无需传输管道的变化。

“每个工作数据管道设计得就像是一个日志;每个损坏的数据管道以其自己的方式损坏。”—Count Leo Tolstoy

  特别重要的是:目标系统只知道日志,不知道数据源系统的任何细节。消费方系统自身无需考虑数据到底是来自于一个RDBMS(关系型数据库管理系统 Relational Database Management System),一种新型的键值存储,或者它不是由任何形式的实时查询系统所生成的。这似乎是一个小问题,但实际上是至关重要的。

  这里我使用术语“日志”取代了“消息系统”或者“发布—订阅”,因为它在语义上更明确,并且对支持数据复制的实际实现这样的需求,有着更接近的描述。我发现“发布订阅”并不比间接寻址的消息具有更多的含义——如果你比较任何两个发布—订阅的消息传递系统的话,你会发现他们承诺的是完全不同的东西,而且大多数模型在这一领域都不是有用的。你可以认为日志是一种消息系统,它具有持久性保证和强大的订阅语义。在分布式系统中,这个通信模型有时有个(有些可怕的)名字叫做原子广播。

  值得强调的是,日志仍然只是基础设施。这并不是管理数据流这个故事的结束:故事的其余部分围绕着元数据,模式,兼容性,以及处理数据结构的所有细节及其演化。除非有一种可靠的,一般的方法来处理数据流运作,语义在其中总是次要的细节。

在LinkefIn(SNS社交网站)

  在LinkedIn从集中式关系数据库向分布式系统集合转化的过程中,我看到这个数据集成问题迅速演变。

  现在主要的数据系统包括:

  搜索

  社交图谱

  Voldemort (键值存储)(译注:一种分布式数据库)

  Espresso (文档存储)

  推举引擎

  OLAP查询引擎(译注:OLAP联机分析技术)

  Hadoop

  Terradata

  Ingraphs (监控图表和指标服务)

  这些都是专门的分布式系统,在其专业领域提供先进的功能。

  这种使用日志作为数据流的思想,甚至在我到这里之前就已经与LinkedIn相伴了。我们开发的一个最早的基础设施之一,是一种称为databus 的服务,它在我们早期的Oracle表上提供了一种日志缓存抽象,可伸缩订阅数据库修改,这样我们就可以很好支持我们的社交网络和搜索索引。

  我会给出一些历史并交代一下上下文。我首次参与到这些大约是在2008年左右,在我们转移键值存储之后。我的下一个项目是让一个工作中的Hadoop配置演进,并给其增加一些我们的推荐流程。由于缺乏这方面的经验,我们自然而然的安排了数周计划在数据的导入导出方面,剩下的时间则用来实现奇妙的预测算法。这样我们就开始了长途跋涉。

  我们本来计划是仅仅将数据从现存的 Oracle数据仓库中剖离。但是我们首先发现将数据从Oracle中迅速取出是一种黑暗艺术。更糟的是,数据仓库的处理过程与我们为Hadoop而计划的批处理生产过程不适合——其大部分处理都是不可逆转的,并且与即将生成的报告具体相关。最终我们采取的办法是,避免使用数据仓库,直接访问源数据库和日志文件。最后,我们为了加载数据到键值存储并生成结果,实现了另外一种管道。

  这种普通的数据复制最终成为原始开发项目的主要内容之一。糟糕的是,在任何时间任意管道都有一个问题,Hadoop系统很大程度上是无用的——在错误的数据基础上运行奇特的算法,只会产生更多的错误数据。

  虽然我们已经以一种通用的方式创建事物,但是每个数据源都需要自定义配置安装。这也被证明是巨量错误与失败的根源。我们在Hadoop上实现的网站功能已经开始流行起来,同时我们发现我们有一长串感兴趣的工程师。每个用户都有他们想要集成的一系列系统,他们想要的一系列新数据源。

▲古希腊时代的 ETL(提取转换加载Extract Transform and Load)。并没有太多变化

  有些东西在我面前开始渐渐清晰起来。

  首先,我们已建成的通道虽然有一些杂乱,但实质上它们是很有价值的。在采用诸如Hadoop的新的处理系统生成可用数据的过程,它开启了大量的可能性。 基于这些数据过去很难实现的计算,如今变为可能。 许多新的产品和分析技术都来源于把分片的数据放在一起,这些数据过被锁定在特定的系统中。

  第二, 众所周知,可靠的数据加载需要数据通道的深度支持。如果我们可以捕获所有我们需要的结构,我就就可以使得Hadoop数据全自动的加载,这样就不需要额外的操作来增加新的数据源或者处理模式变更–数据就会自动的出现在HDFS,Hive表就会自动的生成对应于新数据源的恰当的列。

  第三,我们的数据覆盖率仍然非常低。如果你查看存储于Hadoop中的可用的Linked 数据的全部百分比,它仍然是不完整的。花费大量的努力去使得各个新的数据源运转起来,使得数据覆盖度完整不是一件容易的事情。

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2014-08-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏软件测试经验与教训

网上看到的面试题,我忍不住吐槽....

3678
来自专栏软件测试经验与教训

软件测试从零开始

2956
来自专栏软件测试经验与教训

张老师聊面试

1、现在有个程序,发现在Windows上运行得很慢,怎么判别是程序存在问题还是软硬件系统存在问题?

813
来自专栏程序你好

大规模分布式系统的跟踪系统:Dapper设计给我们的启示

1322
来自专栏IT技术精选文摘

微服务开发中的数据架构设计

3007
来自专栏腾讯社交用户体验设计

一次移动记账 App 的设计探索 - 腾讯ISUX

1982
来自专栏web前端教室

怎么样才能提高自己的代码阅读能力?

首先说,做为一个前端开发工程师,阅读别人的代码就是一项必不可少的技能。因为你新入一个公司,第一件事情,就是打开项目文件,看代码。看不懂代码,就没有办法继续开发。...

23610
来自专栏程序你好

混合持久化让微服务如虎添翼

1213
来自专栏Java架构

微服务下的数据架构什么是微服务?微服务的优势更好的灵活性和可扩展性更容易的规模化微服务的技术特点微服务的数据设计考量一库一服还是一库多服混合持久化 vs. 多模数据库微服务扩展你的数据动态模式支持及快

4646
来自专栏双十二技术哥

GMTC移动开发者大会纪实(二)组件化只是一句口号吗

到了17年的今天,组件化实在不会是一个新名词。各种关于组件化、模块化的讨论层出不穷,具体实践方案也历经了好几代的演进,到了现在甚至已经有完善的组件化框架类如Sm...

1234

扫码关注云+社区