大数据告诉你:诸葛亮和司马懿谁的信用评分更高

“大数据”概念的最早出现,是从2012年2月份纽约时报一篇文章开始的。到目前为止,在大数据领域当中的投资已经越来越热,该领域企业越来越多。但是,有多少公司到底真正使用的是大数据?我相信几乎没有太多,这让我想到1999年、2000年,我刚到美国的时候目睹了所谓互联网1.0版本破灭的过程。

大数据在美国金融当中最直接的场景,主要运用于信用评估体系。美国的信用评估体系很早,对个人都有制衡作用,因此个人不敢不敢将违约的事情做得太绝。中国现在也在做,但是还不太成熟,这个领域中有很多机会。

五大因素评估信用值

美国的信用评估体系很简单,首先是债务的历史。如果个人曾经有过违约,对个人今后借款能力就会有影响。

第二是债务,当下总共欠了多少钱,这个也很重要,即使你是比尔盖茨,如果你借款已经超过了你的偿还能力,也是个问题。

第三点信用历史时间,如果你是在10年之前就有过一张信用卡,或者是相比另外一个人到今年才有第一张新的信用卡,我不能说哪个哪个之间的偿还能力更强,但至少我会知道第一个人有更多的信用数据,这个就是不一样的。

第四点是他的很多相关的其他因素都很重要。比如说最近有没有买房,如果买房就有买房信用卡的记录,有没有买车?也有。这些东西全部加起来形成了美国现有的评分体系。

对于信用数据来说,如果变量太多,从某种程度上来说,信用模型处理起来就会比较麻烦。因为它的深度比广度要重要,对于我来说,我可能关心的是你过去20年,如果你有记录,和你从最近一年当中才有记录,二者之间是不一样的。

那么同样,关注用户的历史远远多于现在,也许这个人一开始是个屌丝,最近突然发财了,可能他的偿还能力就会有巨大的改变,但是这样的因素有没有体现在这个里面?很多人不知道。怎么样把纵向和横向广度上的东西都放进来,这个就会显得相对来说比较重要一点。

传统信用评估:1.0版本信用模型

我们首先搭建一下传统信用体系中,两种类型人物的基本模型,以诸葛亮和司马懿来举例。如果将他们历史上的典故事例来模拟化举例,可以得出两个人信用情况的模型。

司马懿如果活在今天并且要借钱,可以看看今天他的信用条件怎么样:跟曹操混了那么多年,日子过得不错,拥有过许20年的信用历史,而且这个官级从养马开始一点点升上来,他可能盖房子借过钱、买马车借过钱,所以信用值也不错,最近没有新的贷款,如果从美国典型的风控角度来说,绝对可以借钱给司马懿。

如果是诸葛亮要借钱,我们先看诸葛亮的情况:他日子过得没那么好,帮刘备把蜀国给搞下了,但是毕竟蜀国财政没那么好。收入可能只有3000块钱,过去24个月还违约过一次,只有7年的信用历史,最近还老是借钱,借过3次,贷款类型也不丰富,借过钱买过马车。

将这二者之间进行比较,毫无疑问大家都会选择把钱借给司马懿,而不借给诸葛亮,这是个典型的传统的风控模型,看重债务历史,而不看重现在。

真正的信用评估应该是这样的:传统的占很大一部分,但是可替代的网络数据也占据一部分,包括用户在网上体现出来的网络行为、社交信息和来自用户自己的回答,要把所有这些信息全部给综合起来才可以。在传统数据当中,我们只看到了深度没看到广度,现在更多是注重广度,因此当下网络上的数据也是很重要的。

大数据:2.0版本信用评估模型

以上是信用评估的1.0版本,倘若以互联网的思维和方式来分析,或许就能获得截然不同的结果。所以在2.0版本当中,司马懿和诸葛亮的介绍可能是这个样子:

首先,司马懿的上网IP地址来自于魏国国家图书馆、蔡文姬茶楼等,他不从工作的地方来、也不从家里来,可以证明他没有稳定的收入。而他刚刚申请了两个发薪日贷款,这证明他以前有钱,现在没钱。而他的学生贷款是从公司里扣除的,说明他钱不归他控制,而由魏国国家政府控制着意味着信用记录并不好。而从地址来看,他最近一会在许昌,一会在洛阳,一会在长安频繁搬家,从整体情况来分析,很可能最近他混得比较惨。

而诸葛亮借钱的原因是他去年被马车撞了,蜀国的医疗保障不健全,他只好自己付了医疗费,这意味着40%的DIT来自于他借款还医疗费,而之所以历史信用记录不长,是因为他刚刚搬到四川,当丞相的时间不长,信用体系仍然没有建立完全,但最近五年他一直住在丞相府,地址相对稳定,而且在学生时代曾从司马徽,庞德公那里拿过奖学金。如果把所有的因素放在一起,信用评估的结果就会发生变化。

在大数据的场景当中,如果有一个合适的建模的方式,能够产生一个二维决策,那么就可以看到,最终借款的人应该是借给诸葛亮,而不应该是借给司马懿。

大数据信用模型的关键点

大数据模型理念,一切数据皆为信用数据,以此“积少成多、汇流成海”。在此之前做统计、做因果系统的时候,总是希望能找到原因判断这些事情到底是不是靠谱。但是在大数据的情况之下,我们认为可以暂时不考虑背后的原因,并不是不知道原因就等同于它不靠谱。我们只看关联不看因果。

大数据的关键点之二是数据的来源。包括错误信息也是有用信息,比如说谎能体现出一个人素质。

第三点就是所谓的建模,总而言之,大数据当中对所谓特征的变化,特征的提取和最后所谓独立模型细节的建立,最后模型的整合都跟以前传统统计上的理论有很大的区别。

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2014-09-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

一周AI看点 |上汽拿到加州第35张自动驾驶测试牌照,下一代Windows 10更新可用AI抵御勒索病毒

大家好,今天又是周末了,又双叒叕到了给大家写AI行业一周回顾的“好时候”了。今天是7月2日,想到此,小编内心惶恐不安,因为 我却是没什么太大的进步,该念的书还...

35970
来自专栏数据猿

【大咖周语录】智慧城市应该是城市总体资源的配给智慧

【数据猿导读】 之前我们总是将大数据应用的目光放在看得到、摸得着的地方,如城市的建设、营销、金融等,文化方面的大数据应用被大多数人忽略了,可能因为数据和文化一个...

32660
来自专栏AI科技大本营的专栏

一周AI看点 | 人民日报刊文人工智能标准有待厘清;Gartner发布2017年度新兴技术成熟度曲线

本期一周AI看点包括:技术前沿,行业,观点,应用以及投融资等方面。 行业 Gartner发布2017年度新兴技术成熟度曲线:人工智能无处不在 Gartner公司...

39090
来自专栏罗超频道

《中国有嘻哈》爆红,给许知远们深深上了一课?

今年暑期的文娱圈,出现了两匹黑马。一匹是《战狼2》,票房破55亿元刷新国产电影纪录;另一匹是网络综艺节目《中国有嘻哈》,上线4小时点播量突破1亿次,总播放量超过...

36160
来自专栏AI科技大本营的专栏

一周AI看点 | 苹果Swift之父离职特斯拉加盟Google Brain,全球首颗AI芯片麒麟970下单4000万颗

本期一周AI看点包括:行业热点、技术应用、投融资、大咖观点以及技术前沿。 行业 苹果 Swift 之父 Chris Lattner 离职特斯拉加盟 Google...

34950
来自专栏企鹅号快讯

人工智能发展中的信息安全与监管

2016年3月,阿尔法围棋(AlphaGo)以4比1的总比分,战胜围棋世界冠军、职业九段棋手李世石;2017年5月,在中国乌镇围棋峰会上,又以3比的总比分战胜排...

29360
来自专栏华章科技

那个陪你聊微信、发自拍的妹子,可能不是人

导读:之前大数据(ID:hzdashuju)发过几篇跟微信自动回复有关的Python实战。你可别以为,只有少数几个技术宅会用这种冷幽默的方式逗你玩,实际上,有人...

11430
来自专栏AI科技评论

腾讯优图这一年:研究与应用交织,用视觉AI赋能更多

腾讯全球新总部于 11 月 28 日正式启用。这栋位于深圳滨海大厦的新大楼,在门禁上采用了腾讯优图的人脸识别技术。到目前为止,试运行的反馈算得上「非常良好」。 ...

46070
来自专栏AI科技评论

国际系统动力学协会年会 ISDC 2018 大会演讲回顾:如何改变行为方式以拯救地球?

AI 科技评论按:2018 年 8 月 3 日-10 日,国际系统动力学协会年会 ISDC(International System Dynamics Conf...

14320
来自专栏大数据文摘

业界 | 被AI潮抛弃的企业?对话微软CTO韦青,如何应对“变革”焦虑

本文为清华数据科学研究院联合大数据文摘发起的年度白皮书《顶级数据团队建设全景报告》系列专访的第三篇内容。《报告》囊括专家访谈、问卷、网络数据分析,力求为行业内数...

8900

扫码关注云+社区

领取腾讯云代金券