正态分布为什么常见?

统计学里面,正态分布(normal distribution)最常见。男女身高、寿命、血压、考试成绩、测量误差等等,都属于正态分布。

>>>>

以前,我认为中间状态是事物的常态,过高和过低都属于少数,这导致了正态分布的普遍性。最近,读到了 John D. Cook 的文章,才知道我的这种想法是错的。

正态分布为什么常见?真正原因是中心极限定理(central limit theorem)。

"多个独立统计量的和的平均值,符合正态分布。"

上图中,随着统计量个数的增加,它们和的平均值越来越符合正态分布。

根据中心极限定理,如果一个事物受到多种因素的影响,不管每个因素本身是什么分布,它们加总后,结果的平均值就是正态分布。

举例来说,人的身高既有先天因素(基因),也有后天因素(营养)。每一种因素对身高的影响都是一个统计量,不管这些统计量本身是什么分布,它们和的平均值符合正态分布。(注意:男性身高和女性身高都是正态分布,但男女混合人群的身高不是正态分布。)

许多事物都受到多种因素的影响,这导致了正态分布的常见。

读到这里,读者可能马上就会提出一个问题:正态分布是对称的(高个子与矮个子的比例相同),但是很多真实世界的分布是不对称的

比如,财富的分布就是不对称的,富人的有钱程度(可能比平均值高出上万倍),远远超出穷人的贫穷程度(平均值的十分之一就是赤贫了),即财富分布曲线有右侧的长尾。相比来说,身高的差异就小得多,最高和最矮的人与平均身高的差距,都在30%多。

这是为什么呢,财富明明也受到多种因素的影响,怎么就不是正态分布呢?

原来,正态分布只适合各种因素累加的情况,如果这些因素不是彼此独立的,会互相加强影响,那么就不是正态分布了。一个人是否能够挣大钱,由多种因素决定:

家庭 教育 运气 工作 ...

这些因素都不是独立的,会彼此加强。如果出生在上层家庭,那么你就有更大的机会接受良好的教育、找到高薪的工作、遇见好机会,反之亦然。也就是说,这不是 1 + 1 = 2 的效果,而是 1 + 1 > 2。

统计学家发现,如果各种因素对结果的影响不是相加,而是相乘,那么最终结果不是正态分布,而是对数正态分布(log normal distribution),即x的对数值log(x)满足正态分布。

这就是说,财富的对数值满足正态分布。如果平均财富是10,000元,那么1000元~10,000元之间的穷人(比平均值低一个数量级,宽度为9000)与10,000元~100,000元之间的富人(比平均值高一个数量级,宽度为90,000)人数一样多。因此,财富曲线左侧的范围比较窄,右侧出现长尾。

参考链接:Why isn't everything normally distributed?,by John D. Cook

(https://www.johndcook.com/blog/2015/03/09/why-isnt-everything-normally-distributed/)

Achievement is not normal,by John D. Cook

(https://www.johndcook.com/blog/2015/03/09/why-isnt-everything-normally-distributed/)

来源:阮一峰的日志

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2017-12-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏互联网数据官iCDO

可视化图表入门教程

数据可视化,即通过图表形式展现数据,帮助我们快速、准确理解信息。好的可视化会“讲故事”,能向我们揭示数据背后的规律。

1222
来自专栏阮一峰的网络日志

正态分布为什么常见?

统计学里面,正态分布(normal distribution)最常见。男女身高、寿命、血压、考试成绩、测量误差等等,都属于正态分布。 ? 以前,我认为中间状态是...

3015
来自专栏计算机视觉战队

从零基础成为深度学习高手——Ⅰ

本文共9876字,阅读约需14分钟,有兴趣的朋友请耐心阅读,谢谢! 近期许良在公司内部做了一个关于人工智能/深度学习相关的主题分享讲座,为了准备这个演讲,花了1...

3568
来自专栏大数据文摘

资源 | 一文学会统计学中的显著性概念

假设你是一所大学的院长,你收到一份相关报告显示你的学生每晚平均睡眠时间为6.80小时,而全国大学学生的平均睡眠时间为7.02小时。

1004
来自专栏专知

干货:必读机器学习书籍一览表

【导读】转眼之间春节假期已所剩无几,大家是否也开始制定新一年的学习计划?本文就为大家推荐一个机器学习书单,其中大多数可以免费观看,并附上pdf链接。书单内容包括...

34411
来自专栏量子位

深度学习进化编年大事记

安妮 编译自 Import.io官方博客 量子位出品 | 公众号 QbitAI 本文作者Andrew Fogg,可视化网页抓取网站Import.io的联合创始人...

3667
来自专栏数据派THU

清华刘知远:教你用HowNet在深度学习时代搞事情(附论文下载)

来源:知乎 作者:刘知远 本文共3539字,建议阅读11分钟。 本文为大家解读什么是HowNet,并且可以用HowNet在深度学习时代做些什么。 2017年12...

6538
来自专栏新智元

【经典荐书】Yoshua Bengio大神教你深度学习(705页PDF)

Yoshua Bengio教授(个人主页)是机器学习大神之一,尤其是在深度学习这个领域。他连同Geoff Hinton老先生以及 Yann LeCun(燕乐存)...

3656
来自专栏人工智能头条

2015伦敦深度学习峰会:来自DeepMind、Clarifai、雅虎等大神的分享

2074
来自专栏新智元

【重磅】灵长类动物脸部识别算法被破译,大脑黑箱或根本不存在

【新智元导读】发表在 Cell 的一项研究揭示了人脸识别的具体神经元活动过程。对猕猴的实验表明,对脸部的识别是由大脑中 200 多个不同神经元共同编码完成的,每...

3906

扫码关注云+社区