专栏首页PPV课数据科学社区大数据时代世界教育发展的新趋势

大数据时代世界教育发展的新趋势

人才培养更加关注信息素养

最近20年,计算机和网络技术取得了飞速发展和巨大成就,知识和信息呈指数级增长,教学目标从传统的学生掌握知识转化为培养学生有效获取知识和信息以解决实际问题的能力。发掘知识、寻找知识间的联系、总结规律将成为大数据时代对人才的重要要求,各国也纷纷出台了与之相对应的评价标准。 2004年,澳大利亚与新西兰的高校信息素质联合工作组共同颁布了《澳大利亚与新西兰高校信息素质能力指标体系》;中国清华大学在2007年也拟定《北京地区高校信息素质能力指标体系》。 各指标体系虽然在细节上存在差异,但基本内容都是对学生信息素养标准的规定,包括信息意识、信息能力,甚至是信息创新。 2008年,欧盟委员会(the European Commission)指出,信息素养愈来愈变成生活必不可少的能力,不能有效访问信息和使用信息技术将成为社会发展、个人发展的极大障碍。 2010年5月,欧盟发布了“欧洲数字议程”(the Digital Agenda for Europe),这是“2020欧盟战略”的七大计划之一,且最早付诸实施,其内容包括提高全民信息素养,建立“欧洲数字化标准”的概念框架等。 2011年,欧盟委员会又发起了“DIGICOMP计划”(Digital Competence Project),其目的是识别数字能力的主要构成,开发数字能力描述框架提出实施路线方法。

课堂教学走向智能化与泛在化

美国著名的未来学家和社会思想家托夫勒(Alvin Toffler)在《未来的冲击》中提出,“未来的教育”要面向服务、面向创新,而在家上学、教育空间设计成为未来教育发展的重要趋势,学校的界限也将消失。大数据的海量信息内容和精准的学习分析技术带来了智慧学习和泛在学习。 智慧学习是根据学习者的特征自动为学生提供其需要的资源和工具,是一种自动化、智能化的学习方式。学习场所能够智能感知学习情景,识别学习者特征,即时为学生提供合适的学习资源与互动工具;自动记录学习过程,评测学习效果,实时给予反馈,以促进学习者更好地学习。大数据不仅带来了智慧学习,还带来了泛在学习。 泛在学习是在高度发达的计算机和网络技术之下,以大数据为支撑的一种学习方式,所有人都不受时间、地点的局限获取任意需要的信息。泛在学习满足了学习过程的移动性、学习环境的智能性、学习服务的针对性以及学习方式的多元性,学习者更加自由,更加个性化。

学业评价趋向系统化与多元化

传统的学生学业评价主要根据学生考试成绩、作业成绩和课堂表现对学生进行测评,评价结果难以真实反映学生学业水平。大数据时代,教师可以对学生行为长期记录跟踪,对获得的信息进行整理分析,从而发现问题,总结规律,以提高教学质量。美国的“纵向教育系统”就是一个典型案例。 该系统是美国各州首席教育主管理事会(the Council of Chief State Schod Officers)和美国联邦教育部数据峰会(US Department of Education's Data Summit)联合,在全国范围内建立的以州为单位的纵向教育数据系统,也即数据质量运动(Data Quality Campaign)。各州对每个学生都建有唯一的档案记录,记录了学生从幼儿园到12年级的每个成长阶段和整个成长轨迹。 该系统包含10个数据库,其内容为:学生每年的行为表现;学生注册、统计及参加的教育项目;学生每年的考试成绩;未参加考试学生及其原因记录;与学生相关的教师档案系统;学生完成的课程和学分;SAT考试分数记录;学生毕业率和辍学率;学生从幼儿园到中学后记录卡;评估和核查数据有效性的记录。根据纵向数据系统,学校或教师可利用行之有效的分析工具和策略,对学生整个成长档案进行综合分析,从而评估学生学业情况。评价内容不仅依据学生最终的毕业考试成绩,还分析从幼儿园到高中每个阶段的学习成绩;不仅分析学生各学科的考试成绩,还重视学生在学习过程中的行为表现。评价方式从传统的重结果转向重过程,从而更系统、更多元地评价学生。

在线学习成为超越传统的新型教学模式

在线学习在大数据时代正成为一种潮流。孟加拉裔美国人萨尔曼·可汗在2009年创立的可汗学院是一家非营利性的、以网络课程为载体的教育组织,通过网络进行免费视频授课,授课内容主要包括数学、物理和化学等7个学科的知识,授课视频被广泛传播,目前全球已有成千上万的学生通过互联网学习。 在线学习之所以发展很快,其最大的优势在于学生不受时间、地点的限制就可以享受优质的教学资源,同时还在于能量巨大的学习分析技术。学习分析技术利用在线学习系统中的大数据来分析学习者的学习趋势和学习效果,找出教学活动规律,以提高教育教学质量。 在线学习系统可跟踪学生的在线学习轨迹,自动保存学生学习过程中的各种信息,深度挖掘更为广泛的学生行为。教师能更好地把握学生能力及知识的特点,在教学过程中做到有的放矢。不仅如此,在线学习的教学反馈和测试比传统的教学也更有优势。传统的教学从教师布置作业,学生完成作业,再到教师评定并返回给学生,反馈速度较慢,周期较长,而在线学习能够在学习者学习完某个知识点后立即呈现相应的试题,学生完成提交后可迅速得到系统的反馈。

大数据影响了世界教育发展趋势,改变了传统的教育目标、教学方法、教学评价和教学模式。在大数据时代,教育相关产业研究者应深入挖掘、整理和分析教学数据,从中探索总结教育/教学的发展规律和趋势。随着教育全球化的深入,大规模的、跨学科的资源共享和协同工作成为可能,各国教育不再是各自为战,而应形成共享文化、协作互助,共同促进科学研究的创新。

本文整理来源:《比较教育研究》2015年第9期

本文分享自微信公众号 - PPV课数据科学社区(ppvke123)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2016-04-01

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 数据挖掘人工智能使教育定制化

    大数据已经应用到课堂上了,比如:创建自适应学习课程,指导学生通过更有效的方式取得成功,而有些应用则针对管理人员和学校,这些数据应用帮助校长和老师有效地提高教学水...

    小莹莹
  • 干货 | 17张思维导图,一网打尽机器学习统计基础(附原图下载)

    本文用一系列「思维导图」由浅入深的总结了「统计学」领域的基础知识,是对之前系列文章做的一次完整的梳理,也是我至今为止所有与统计有关的学习笔记。众所周知,「统计学...

    小莹莹
  • 【思维导图】机器学习基础之「统计篇」

    本文用一系列「思维导图」由浅入深的总结了「统计学」领域的基础知识,是对之前系列文章做的一次完整的梳理,也是我至今为止所有与统计有关的学习笔记。众所周知,「统计学...

    小莹莹
  • 数据挖掘人工智能使教育定制化

    大数据已经应用到课堂上了,比如:创建自适应学习课程,指导学生通过更有效的方式取得成功,而有些应用则针对管理人员和学校,这些数据应用帮助校长和老师有效地提高教学水...

    小莹莹
  • “我“该学习什么技术

    技巅
  • 大数据和AI怎么与现代教育相结合?

    ==== 技术商业观察er ==== we are new observer ? Observation, we are professional observ...

    企鹅号小编
  • 在学习过程中,老师重要还是自己的学习能力重要?

    对于一个老师来说,老师的重要程度自然而然是不可言喻的。一个老师的风格,如果能够受到一个学生的喜爱,他就能够大大影响这个学生。理由很简单,对于我们任何一个人来说...

    刘金玉编程
  • Java SE | 每日作业卷day09

    (1)定义学生类,为了键盘录入数据方便,把学生类中的成员变量都定义为String类型;

    剑走天涯
  • Oracle统计信息的那点事儿

    在Oracle的11g版本中,统计信息为自动收集功能,在部署安装11g Oracle软件过程中,其中有一个步骤便是提示是否启动这个功能(默认是启用这个功能);且...

    bisal
  • 自动统计信息收集(Automatic Optimizer Statistics Collection)

    本文主要介绍自动统计信息收集(Automatic Optimizer Statistics Collection)任务。

    TeacherWhat

扫码关注云+社区

领取腾讯云代金券