# ZOJ 3661 Palindromic Substring(回文树)

Palindromic Substring

Time Limit: 10 Seconds      Memory Limit: 65536 KB

In the kingdom of string, people like palindromic strings very much. They like only palindromic strings and dislike all other strings. There is a unified formula to calculate the score of a palindromic string. The score is calculated by applying the following three steps.

1. Since a palindromic string is symmetric, the second half(excluding the middle of the string if the length is odd) is got rid of, and only the rest is considered. For example, "abba" becomes "ab", "aba" becomes "ab" and "abacaba" becomes "abac".
2. Define some integer values for 'a' to 'z'.
3. Treat the rest part as a 26-based number M and the score is M modulo 777,777,777.

However different person may have different values for 'a' to 'z'. For example, if 'a' is defined as 3, 'b' is defined as 1 and c is defined as 4, then the string "accbcca" has the score (3×263+4×262+4×26+1) modulo 777777777=55537.

One day, a very long string S is discovered and everyone in the kingdom wants to know that among all the palindromic substrings of S, what the one with the K-th smallest score is.

#### Input

The first line contains an integer T(1 ≤ T ≤ 20), the number of test cases.

The first line in each case contains two integers n, m(1 ≤ n ≤ 100000, 1 ≤ m ≤ 20) where n is the length of S and m is the number of people in the kingdom. The second line is the string S consisting of only lowercase letters. The next m lines each containing 27 integers describes a person in the following format.

Ki va vb ... vz

where va is the value of 'a' for the person, vb is the value of 'b' and so on. It is ensured that the Ki-th smallest palindromic substring exists and va, vb, ..., vz are in the range of [0, 26). But the values may coincide.

#### Output

For each person, output the score of the K-th smallest palindromic substring in one line. Print a blank line after each case.

#### Sample Input

```3
6 2
abcdca
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
4 10
zzzz
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
51 4
abcdefghijklmnopqrstuvwxyzyxwvutsrqponmlkjihgfedcba
1 1 3 3 25 20 25 21 7 0 9 7 3 16 15 14 19 5 19 19 19 22 8 23 2 4 1
25 1 3 3 25 20 25 21 7 0 9 7 3 16 15 14 19 5 19 19 19 22 8 23 2 4 1
26 1 3 3 25 20 25 21 7 0 9 7 3 16 15 14 19 5 19 19 19 22 8 23 2 4 1
76 1 3 3 25 20 25 21 7 0 9 7 3 16 15 14 19 5 19 19 19 22 8 23 2 4 1```

#### Sample Output

```1
620

14
14
14
14
14
14
14
378
378
378

0
9
14
733665286

#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <stdio.h>
#include <math.h>

using namespace std;
typedef long long int LL;
const int maxn=1e5+5;
const int mod=777777777;
char str[maxn];
int n,m;
LL k;
int a[26];
LL pow(int x)
{
LL sum=1;
LL n=26;
for(x;x;x>>=1)
{
if(x&1)
sum=(sum*n)%mod;
n=(n*n)%mod;
}
return sum;
}
struct Node
{
LL num;
LL sum;
}c[maxn];
int cmp(Node a,Node b)
{
return a.sum<b.sum;
}
struct Tree
{
int next[maxn][26];
int fail[maxn];
LL num[maxn];
int cnt[maxn];
int len[maxn];
int s[maxn];
int last,p,n;
int new_node(int x)
{
memset(next[p],0,sizeof(next[p]));
cnt[p]=0;
num[p]=0;
len[p]=x;
return p++;
}
void init()
{
p=0;
new_node(0);
new_node(-1);
last=0;
n=0;
s[0]=-1;
fail[0]=1;
}
int get_fail(int x)
{
while(s[n-len[x]-1]!=s[n])
x=fail[x];
return x;
}
{
x-='a';
s[++n]=x;
int cur=get_fail(last);
if(!(last=next[cur][x]))
{
int now=new_node(len[cur]+2);
fail[now]=next[get_fail(fail[cur])][x];
next[cur][x]=now;
num[now]=(num[cur]+((LL)pow((len[cur]+1)/2)*a[x])%mod)%mod;
last=now;
}
cnt[last]++;
return 1;
}
void count()
{
for(int i=p-1;i>=0;i--)
cnt[fail[i]]+=cnt[i];
}
void fun()
{
count();
int cot=0;
for(int i=2;i<p;i++)
{
c[cot].num=cnt[i];
c[cot++].sum=num[i];
}
sort(c,c+cot,cmp);
int i;
for( i=0;i<cot;i++)
{
if(k>c[i].num)
{
k-=c[i].num;
}
else
break;
}
printf("%d\n",c[i].sum);
}
}tree;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
scanf("%s",str);
for(int i=1;i<=m;i++)
{
scanf("%lld",&k);
for(int j=0;j<26;j++)
scanf("%d",&a[j]);
tree.init();
for(int j=0;j<n;j++)
{
}
tree.fun();
}
cout<<endl;
}
return 0;
}```

442 篇文章43 人订阅

0 条评论

## 相关文章

### HDU Palindrome subsequence（区间DP）

Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 1...

2939

### hdu 4315 Climbing the Hill（阶梯博弈转nim博弈）

Climbing the Hill Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/...

35711

### HDU 3578 Greedy Tino（双塔DP）

Greedy Tino Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768...

3465

### HDU 3309 Roll The Cube(bfs)

Roll The Cube Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/327...

39613

### CodeForces 25C(Floyed 最短路)

F - Roads in Berland Time Limit:2000MS     Memory Limit:262144KB     64bit IO...

2354

### FZU Moon Game(几何)

Accept: 710    Submit: 2038 Time Limit: 1000 mSec    Memory Limit : 32768 KB  P...

3165

### HDU-1520 Anniversary party（树形DP）

Anniversary party Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/...

2864

### hdu-----(2807)The Shortest Path(矩阵+Floyd)

The Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/...

3965

29411

### CodeForces Roads not only in Berland(并查集)

H - Roads not only in Berland Time Limit:2000MS     Memory Limit:262144KB    ...

2505