必读 | 六月份不容错过的十大重磅好文,机器学习和数据科学的小伙伴拿走不谢

作者 | Flavian Hautbois

翻译 | AI科技大本营(rgznai100)

参与 | JeyZhang,波波

上个月,我们发了很多文章。但是,机器学习和数据科学整个领域所发表的新文章更多。如何用一篇文章就能梳理好这些最新的内容呢?我们苦思冥想,从中找出了这十篇有关神经网络、TensorFlow、数据可视化、生成式对抗网络(GAN)以及LSTM的最佳文章。

只此一篇,你就能把握住机器学习和数据科学整个领域的新内容,绝对不容错过。

如果你的阅读习惯是边看边动手做,请一定先备好Python环境。

我们先从下面的漫画开始:

图片翻译:

“这个问题已经困扰我们很多年了。” “不用纠结,让我用算法来替你解决它。” 6个月后… “哇,你这问题确实好难。”“你不是说……”

➤1 —  Dash入门

Dash提供了一套全新的用于web的图表库,而这篇文章深入介绍了Dash图表库是如何设计的,以及介绍了在Dash中如何有效地处理常见错误以及多重集成。文章中对Excel和R语言系统进行了很合理的对比。使用Dash进行图表实现时,一个技术上的挑战是,你需要维护一个flask应用以及拥有一个对ReactJS友好的前端。

Adil Baaj在我们的博客上发布了一篇对比多种javascript图表库的文章。如果希望入门Dash,可以阅读来自plotly的《Dash入门》。

Dash入门

https://medium.com/@plotlygraphs/introducing-dash-5ecf7191b503

对比多种javascript图表库

https://blog.sicara.com/compare-best-javascript-chart-libraries-2017-89fbe8cb112d/

➤2 —  Google发布用于目标检测的TensorFlow API

Google公司一直致力于让大数据领域最新研究的实现变得更加简单。本月他们在TensorFlow上发布了用于目标检测的API,也发布了适用于移动设备的版本。

详见Google Research Blog的原文:

https://research.googleblog.com/2017/06/supercharge-your-computer-vision-models.html

➤3  — 初识生成式对抗网络(Generative Adversarial Networks, GAN)

这是一篇介绍如何训练一个神经网络来生成手写数字图片的教程。我们很欣赏这种在对抗式网络这个新的研究方向上的实践技术,这又是一个在经典MNIST数据集上做的实验。在这篇文章中,你将得知训练生成式对抗网络是一件困难的事,是因为你需要在生成器与判别器的训练中找到平衡。本教程仅需要大概半小时就能读完,属同类教程中的佼佼者。

详见O’Reilly原文

https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners

➤4  —  使用深度学习技术重构出高分辨率的音频

受到最近图像方面研究的启发,文章作者尝试用低质量的音频文件来重构出分辨率更高的音频,最终音频质量上没有取得大幅度的提高,但也一定程度上达到了目的。尽管实验结果上的提升并不显著,我们仍然认为该篇文章为本月最佳文章之一。原因如下:

  • 本文着重于重构VoIP语音,这点很巧妙。
  • 语音方面的研究工作比较复杂,而深度学习技术的应用除了在语音转文本应用领域之外,其他的较少见到。

我们觉得如果作者在卷积网络中使用频谱表示而不是时间表示的话,实验结果还能再提升一步。

详见Insight Data原文

https://blog.insightdatascience.com/using-deep-learning-to-reconstruct-high-resolution-audio-29deee8b7ccd

➤5  —  探索LSTM

我们破例收录了这篇文章(发表时间在5月30日,严格上说不是6月份的文章),因为文章写得特别好。这篇文章的前半部分是一个LSTM教程,后半部分深入浅出对LSTM作了详解。详解部分使得本文非常有价值。审计 (Audit) 仍然是大数据算法中最困难的部分。正因如此,Edwin Chen做的可视化工具非常棒,因为它详细解析了LSTM的原理。

详见AI科技大本营的完整译文:多图|入门必看:万字长文带你轻松了解LSTM全貌

➤6  —  怎样训练神经网络来自动写代码?

如果你阅读了前面关于LSTM的文章,那么你已经看到了一个关于生成Java程序的例子。来自Thibault Neveu的这篇文章也在尝试做同样的事情。文中使用TensorFlow并且比之前的文章更易于上手,并且更适合做快速阅读。

详见AI科技大本营的完整译文:手把手教你自制编程AI:训练2小时,RNN就能写自己的代码

➤7  —  人工智能让制药业再创辉煌以及所面临的挑战

这篇文章介绍了如何使用生成式对抗网络来生成新的抗癌药物,思路很棒。在制药研究领域有一个Eroom定律,与摩尔定律正相反(随着时间推移,寻找新药的难度呈指数增长)。Mostapha Benhenda强烈呼吁研究人员在大数据与药理学交叉领域上的研究采取行动。

详见Hackernoon原文:

https://hackernoon.com/make-pharma-great-again-with-artificial-intelligence-some-challenges-50e91ea9988d

➤8  —  你所不知道的图表展示小技巧

注意到上面饼状图里一些奇怪的地方了吗?你应该注意到,不过你可能没有(至少我没)。这篇文章详细举例说明了用图表来做比较时的错误用法,从中你会学到在对比两种相似的数据时,图表展示的方式非常重要。

详见Andrew Gelman的原文

http://andrewgelman.com/2017/06/02/youll-never-guess-one-quick-trick-diagnose-problems-graphs-make-improvements/

➤9 — 我在Kaggle上获胜的小技巧

Kaggle是一个数据科学方面在线竞赛平台。公司可以提交赛题以及相关数据集供参赛者解决。Kaggle是一个大型社区,你在上面有机会获得百万美金大奖。这篇文章的作者分享了他从开始时的新手到后来比赛取得第五名的经验。我们认为他总结的参赛小技巧也可供企业数据科学家参考,如果你想参与Kaggle上的竞赛,那么这篇文章将非常值得一读。

详见Dataquest原文

https://www.dataquest.io/blog/kaggle-tips-tricks/

➤10 — 大数据的体现:Amazon收购全食超市的交易

最后再介绍一篇关于商业上Amazon收购Whole Foods超市的文章。随着大数据的研究逐渐渗透商界,我们认为这类文章是这个列表的重要补充。从企业获取数据的角度来看,Amazon收购Whole Foods超市是明智之举。因为Amazon虽然是个大公司,但是数量上远不及Whole Foods超市多,所以收购将为其带来巨大的数据财富。

详见Dataiku:

https://blog.dataiku.com/big-data-is-the-big-news-in-amazon-whole-foods-deal

对于我们选出来的本月十佳文章,你都有看过吗?你心里有没有其他更好的选项?欢迎在评论中告诉我们,如果你们喜欢,咱们下期再见。

原文链接

https://blog.sicara.com/06-2017-best-big-data-new-articles-this-month-5c3478872a61

原文发布于微信公众号 - AI科技大本营(rgznai100)

原文发表时间:2017-07-10

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

深度 | 谷歌和OpenAI新研究:如何使用达尔文进化论辅助设计人工智能算法?

选自QZ 作者:Dave Gershgorn 机器之心编译 参与:吴攀、黄小天、李亚洲 现代机器智能建立在模仿自然的基础之上——这一领域的主要目的是在计算机中复...

388140
来自专栏AI科技大本营的专栏

Google Brain去年干了太多事,Jeff Dean一篇长文都没回顾完

编译 | AI科技大本营(rgznai100) 参与 | Reason_W 从AutoML、机器学习新算法、底层计算、对抗性攻击、模型应用与底层理解,到开源数据...

37580
来自专栏大数据文摘

开学了,如何用2017年最后三分之一学会深度学习?

16640
来自专栏新智元

自然语言处理顶级会议 EMNLP 最佳论文出炉,聚焦神经网络 (下载)

【新智元导读】自然语言处理顶级会议 EMNLP2016 今天公布了本届大会最佳论文。本文介绍会议概况,节选主旨演讲、讲座及Workshop 等亮点介绍,最后给出...

516170
来自专栏GAN&CV

如何快速进阶AI的资源

本文译自:https://towardsdatascience.com/getting-started-with-reading-deep-learning-r...

15420
来自专栏PPV课数据科学社区

基于客户行为事件的跨领域统一推荐模型探讨

跨领域深度学习模型一直是近几年推荐系统主要研究方向之一, 本文探讨一种个人客户画像构建的新思路, 并讨论对应的基于个人行为事件的跨领域统一推荐模型。 1、基于个...

377140
来自专栏量子位

牛津大学最新研究:给我一张照片,就能让你开口讲话

若朴 发自 凹非寺 量子位 报道 | 公众号 QbitAI 这句话你说过没有?不承认?我给你看证据! 于是你就看到一段视频,画面中的你开口说了一段你不曾讲过的话...

43870
来自专栏大数据文摘

AI大事件丨吴恩达再度出手创立AI制造业公司,李飞飞领衔谷歌中国AI研究中心,AI或将应用于成人电影

17550
来自专栏量子位

再谈“炼金术”:可以使用不严谨的方法,但拒绝不严谨的评估方法

原作:inFERENCe 安妮 编译自 inference.vc 量子位 出品 | 公众号 QbitAI 昨天,NIPS大会中“Test of Time”最具时...

26950
来自专栏AI研习社

DeepMind 弹性权重巩固算法让 AI 拥有“记忆” ,将成机器高效学习的敲门砖

一直以来,计算机程序都是个“左耳进,右耳出”的“傻小子”,它们很快就会忘掉所做过的任务。DeepMind 决定改变传统的学习法则,让程序在学习新任务时也不忘掉旧...

35450

扫码关注云+社区

领取腾讯云代金券