前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Java并发编程实战系列6之任务执行(Task Execution)

Java并发编程实战系列6之任务执行(Task Execution)

作者头像
JavaEdge
发布2018-04-28 16:43:43
7280
发布2018-04-28 16:43:43
举报
文章被收录于专栏:JavaEdgeJavaEdge

1. 在线程中执行任务

1.1 串行的执行任务

这是最经典的一个最简单的Socket server的例子,服务器的资源利用率非常低,因为单线程在等待I/O操作完成时,CPU处于空闲状态。从而阻塞了当前请求的延迟,还彻底阻止了其他等待中的请求被处理。

代码语言:javascript
复制
public class SingleThreadWebServer {
    public static void main(String[] args) throws IOException {
        ServerSocket socket = new ServerSocket(80);
        while (true) {
            Socket connection = socket.accept();
            handleRequest(connection);
        }
    }

    private static void handleRequest(Socket connection) {
        // request-handling logic here
    }
}

1.2 显式地为任务创建线程

任务处理从主线程中分离出来,主循环可以快速等待下一个连接,提高响应性。同时任务可以并行处理了,吞吐量也提高了。

代码语言:javascript
复制
public class ThreadPerTaskWebServer {
    public static void main(String[] args) throws IOException {
        ServerSocket socket = new ServerSocket(80);
        while (true) {
            final Socket connection = socket.accept();
            Runnable task = new Runnable() {
                public void run() {
                    handleRequest(connection);
                }
            };
            new Thread(task).start();
        }
    }
    private static void handleRequest(Socket connection) {
        // request-handling logic here
    }
}

1.3 无限制创建线程的不足

  • 线程的生命周期开销非常高
  • 资源消耗。大量的空闲线程占用内存,给GC带来压力,同时线程数量过多,竞争CPU资源开销太大。 稳定性。容易引起GC问题,甚至OOM

2 Executor框架

任务就是一组逻辑工作单元(unit of work),而线程则是使任务异步执行的机制。

Executor接口,是代替Thread来做异步执行的入口,接口虽然简单,却为非常灵活强大的异步任务执行框架提供了基础。 提供了一种标准的方法将任务的提交与执行过程解耦,并用Runnable(无返回时)或者Callable(有返回值)表示任务。

Executor基于生产者-消费者模式 提交任务/执行任务分别相当于生产者/消费者,通常是最简单的实现生产者-消费者设计的方式了

2.1 基于Executor改造后的样例如下

将请求处理任务的提交与任务的实际执行解耦,并且只需采用另一种不同的Executor实现,就可以改变服务器的行为,其影响远远小于修改任务提交方式带来的影响

2.2 执行策略

这一节主要介绍做一个Executor框架需要靠那些点?

在什么线程中执行任务? 任务按照什么顺序执行?FIFO/LIFO/优先级 有多少个任务可以并发执行? 队列中允许多少个任务等待? 如果系统过载了要拒绝一个任务,那么选择拒绝哪一个?如何通知客户端任务被拒绝了? 在执行任务过程中能不能有些别的动作before/after或者回调? 各种执行策略都是一种资源管理工具,最佳的策略取决于可用的计算资源以及对服务质量的要求。

因此每当看到 new Thread(runnable).start(); 并且希望有一种灵活的执行策略的时候,请考虑使用Executor来代替

2.3 线程池

在线程池中执行任务比为每个任务分配一个线程优势明显:

重用线程,减少开销。 延迟低,线程是等待任务到达。 最大化挖掘系统资源以及保证稳定性。CPU忙碌但是又不会出现线程竞争资源而耗尽内存或者失败的情况。 Executors可以看做一个工厂,提供如下几种Executor的创建:

代码语言:javascript
复制
newCachedThreadPool
newFixedThreadPool
newSingleThreadExecutor
newScheduledThreadPool

2.4 Executor的生命周期

为解决执行服务的生命周期问题,Executor扩展了ExecutorService接口,添加了一些用于生命周期管理的方法

一个优雅停止的例子:

增加生命周期扩展Web服务器的功能

  • 调用stop
  • 客户端请求形式

关闭

2.5 延迟任务与周期任务

使用Timer的弊端在于

  • 如果某个任务执行时间过长,那么将破坏其他TimerTask的定时精确性(执行所有定时任务时只会创建一个线程),只支持基于绝对时间的调度机制,所以对系统时钟变化敏感
  • TimerTask抛出未检查异常后就会终止定时线程(不会捕获异常)

更加合理的做法是使用ScheduledThreadPoolExecutor,只支持基于相对时间的调度 它是DelayQueue的应用场景

3 找出可利用的并行性

3.1 携带结果的任务Callable和Future

Executor框架支持Runnable,同时也支持Callable(它将返回一个值或者抛出一个异常) 在Executor框架中,已提交但是尚未开始的任务可以取消,但是对于那些已经开始执行的任务,只有他们能响应中断时,才能取消。 Future非常实用,他的API如下

内部get的阻塞是靠LockSupport.park来做的,在任务完成后Executor回调finishCompletion方法会依次唤醒被阻塞的线程。

ExecutorService的submit方法接受Runnable和Callable,返回一个Future。ThreadPoolExecutor框架留了一个口子,子类可以重写newTaskFor来决定创建什么Future的实现,默认是FutureTask类。

3.2 示例:使用Future实现页面的渲染器

3.3 CompletionService: Executor与BlockingQueue

计算完成后FutureTask会调用done方法,而CompletionService集成了FutureTask,对于计算完毕的结果直接放在自己维护的BlockingQueue里面,这样上层调用者就可以一个个take或者poll出来。

3.3 示例:使用CompletionService提高渲染性能

代码语言:javascript
复制
void renderPage(CharSequence source) {
        final List<ImageInfo> info = scanForImageInfo(source);
        CompletionService<ImageData> completionService =
                new ExecutorCompletionService<ImageData>(executor);
        for (final ImageInfo imageInfo : info)
            completionService.submit(new Callable<ImageData>() {
                public ImageData call() {
                    return imageInfo.downloadImage();
                }
            });

        renderText(source);

        try {
            for (int t = 0, n = info.size(); t < n; t++) {
                Future<ImageData> f = completionService.take();
                ImageData imageData = f.get();
                renderImage(imageData);
            }
        } catch (InterruptedException e) {
            Thread.currentThread().interrupt();
        } catch (ExecutionException e) {
            throw launderThrowable(e.getCause());
        }
    }
6.3.7 为任务设置时限

Future的get支持timeout。

6.3.8 批量提交任务

使用invokeAll方法提交List<Callable>,返回一个List<Future>

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018.02.14 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 在线程中执行任务
    • 1.1 串行的执行任务
      • 1.2 显式地为任务创建线程
        • 1.3 无限制创建线程的不足
        • 2 Executor框架
          • 2.1 基于Executor改造后的样例如下
            • 2.2 执行策略
              • 2.3 线程池
                • 2.4 Executor的生命周期
                  • 2.5 延迟任务与周期任务
                  • 3 找出可利用的并行性
                    • 3.1 携带结果的任务Callable和Future
                      • 3.2 示例:使用Future实现页面的渲染器
                        • 3.3 CompletionService: Executor与BlockingQueue
                          • 3.3 示例:使用CompletionService提高渲染性能
                          领券
                          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档