java — 线程池

线程池的作用

线程池作用就是限制系统中执行线程的数量。      根据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程排队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池中有等待的工作线程,就可以开始运行了;否则进入等待队列。

使用线程池的原因

  1.减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务;

  2.可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机);

  Java里面线程池的顶级接口是Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是ExecutorService。

要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在Executors类里面提供了一些静态工厂,生成一些常用的线程池。

1. newSingleThreadExecutor

  创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。

package threadpool;

public class MyThread extends Thread
{
	public void run()
	{
		System.out.println(Thread.currentThread().getName() + " 正在执行");
	}
}
package threadpool;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class TestSingleThreadExecutor 
{
	public static void main(String[] args)
	{
		//创建一个单线程的线程池(可重用固定线程数的线程池)
		ExecutorService pool = Executors.newSingleThreadExecutor();
		//创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口
		Thread t1 = new MyThread();
		Thread t2 = new MyThread();
		Thread t3 = new MyThread();
		Thread t4 = new MyThread();
		Thread t5 = new MyThread();
		
		//将线程放入线程池中进行执行
		pool.execute(t1);
		pool.execute(t2);
		pool.execute(t3);
		pool.execute(t4);
		pool.execute(t5);
		
		//关闭线程池
		pool.shutdown();
		
	}

}

  执行结果:

pool-1-thread-1 正在执行
pool-1-thread-1 正在执行
pool-1-thread-1 正在执行
pool-1-thread-1 正在执行
pool-1-thread-1 正在执行

2.newFixedThreadPool

  创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大值。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。

package threadpool;

public class MyThread extends Thread
{
	public void run()
	{
		System.out.println(Thread.currentThread().getName() + " 正在执行");
	}
}
package threadpool;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class TestFixedThreadPool 
{
	public static void main(String[] args)
	{
		//创建一个可重用固定线程数的线程池
		ExecutorService pool = Executors.newFixedThreadPool(2);
		
		//创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口
		Thread t1 = new MyThread();
		Thread t2 = new MyThread();
		Thread t3 = new MyThread();
		Thread t4 = new MyThread();
		Thread t5 = new MyThread();
		
		//将线程放入到线程池中执行
		pool.execute(t1);
		pool.execute(t2);
		pool.execute(t3);
		pool.execute(t4);
		pool.execute(t5);
		//关闭线程池
		pool.shutdown();
	}
}

输出结果:

pool-1-thread-1 正在执行
pool-1-thread-2 正在执行
pool-1-thread-1 正在执行
pool-1-thread-1 正在执行
pool-1-thread-2 正在执行

3. newCachedThreadPool

  创建一个可缓存的线程池如果线程池的大小超过了处理任务所需要的线程,那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。

  线程池为无限大,当执行第二个任务时第一个任务已经完成,会复用执行第一个任务的线程,而不用每次新建线程。

package threadpool;

public class MyThread extends Thread
{
	public void run()
	{
		System.out.println(Thread.currentThread().getName() + " 正在执行");
	}
}
package threadpool;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class TestCachedThreadPool 
{
	public static void main(String[] args)
	{
		//创建一个可重用固定线程数的线程池
		ExecutorService pool = Executors.newCachedThreadPool();
		
		//创建实现了Runnable接口的对象
		Thread t1 = new MyThread();
		Thread t2 = new MyThread();
		Thread t3 = new MyThread();
		Thread t4 = new MyThread();
		Thread t5 = new MyThread();
		
		//将线程放到线程池中运行
		pool.execute(t1);
		pool.execute(t2);
		pool.execute(t3);
		pool.execute(t4);
		pool.execute(t5);
		
		//关闭线程池
		pool.shutdown();
	}

}

  输出结果:

pool-1-thread-2 正在执行
pool-1-thread-4 正在执行
pool-1-thread-3 正在执行
pool-1-thread-1 正在执行
pool-1-thread-5 正在执行

4.newScheduledThreadPool

  创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。

package threadpool;

import java.util.concurrent.ScheduledThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class TestScheduledThreadPoolExecutor
{
	public static void main(String[] args)
	{
		ScheduledThreadPoolExecutor exec = new ScheduledThreadPoolExecutor(1);
		exec.scheduleAtFixedRate(new Runnable()
		{
			public void run()
			{
				System.out.println("+++++++++++++++++");
			}
		},1000, 5000, TimeUnit.MILLISECONDS);
		exec.scheduleAtFixedRate(new Runnable()
		{
			public void run()
			{
				System.out.println(System.nanoTime());
			}
		}
		, 1000, 2000, TimeUnit.MILLISECONDS);

	}
}

运行结果:

+++++++++++++++++
86130549474680
86132549344828
86134549700024
+++++++++++++++++
86136549678605
86138548936977
+++++++++++++++++
86140548891908
86142549532243
86144548832114
+++++++++++++++++
86146549422471

ThreadPoolExecutor详解

public class ThreadPoolExecutor extends AbstractExecutorService {
    .....
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue,RejectedExecutionHandler handler);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
        BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler);
    ...
}

  ThreadPoolExecutor继承自AbstractExecutorService类,并且提供了四个构造器。 

ThreadPoolExecutor(int corePoolSize, 
		   int maximumPoolSize, 
		   long keepAliveTime, 
		   TimeUnit unit,
		   BlockingQueue<Runnable>workQueue, 
		   ThreadFactory threadFactory, 
		   RejectedExecutionHandler handler);

corePoolSize:核心池的大小,创建线程池之后,默认情况下,线程池中并没有任何线程,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中;

maximumPoolSize:线程池最大线程数,它表示在线程池中最多能创建多少个线程;

keepAliveTime:表示线程没有任务执行时多做保持多久时间会终止。只有线程池中的线程数大于corePoolSize的时候,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize的时候,如果一个线程空闲的时间达到keepAliveTime,则会终止,知道线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,keepAliveTime参数也会起作用,直到线程池中的线程数为0。

unit:参数keepAliveTime的时间单位,有七种取值。在其中有7种静态属性:

TimeUnit.DAYS;               //天
TimeUnit.HOURS;             //小时
TimeUnit.MINUTES;           //分钟
TimeUnit.SECONDS;           //秒
TimeUnit.MILLISECONDS;      //毫秒
TimeUnit.MICROSECONDS;      //微妙
TimeUnit.NANOSECONDS;       //纳秒

workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:

threadFactory:线程工厂,主要用来创建线程;

handler:表示当拒绝处理任务时的策略,有以下四种取值:

ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。 
ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。 
ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务 

---恢复内容结束---

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏chenssy

【死磕Java并发】----- 死磕 Java 并发精品合集

【死磕 Java 并发】系列是 LZ 在 2017 年写的第一个死磕系列,一直没有做一个合集,这篇博客则是将整个系列做一个概览。

1212
来自专栏JavaQ

concurrent包下线程池类小结

并发包下的线程池技术虽然常用,但是知识点较多易忘。所以,参考网络资源做了一个小结,便于复习。 Executor接口 用于执行已提交的Runnable任务。 ? ...

3364
来自专栏余林丰

CountDownLatch——闭锁的实现之一

CountDownLatch实际上是一种闭锁实现。闭锁:是一种同步工具类,可以延迟线程的进度知道其到达终止状态——《Java并发编程实战》。这个怎么解释呢?简单...

2099
来自专栏芋道源码1024

熔断器 Hystrix 源码解析 —— 命令执行(二)之执行隔离策略

本文主要基于 Hystrix 1.5.X 版本 1. 概述 2. HystrixThreadPoolProperties 3. HystrixThreadPoo...

4966
来自专栏Phoenix的Android之旅

曾经被面试过BlockingQueue吗?

想必很多人面试时有被问到阻塞队列的经历。我们经常会在各种代码中见到或者用到它,最经常见到的地方就是线程池。

811
来自专栏我叫刘半仙

【JDK并发包基础】线程池详解

        为了更好的控制多线程,JDK提供了一套线程框架Executor来帮助程序员有效的进行线程控制。Java.util.concurrent 包是专为...

6555
来自专栏张泽旭的专栏

Netty5实现接收服务端返回数据

2802
来自专栏nice_每一天

Java线程池实现原理之自定义线程池(一)

1.7K2
来自专栏你不就像风一样

Java线程池实现原理与技术(ThreadPoolExecutor,Executors)

多线程的软件设计方法确实可以最大限度地发挥多核处理器的计算能力,提高生产系统的吞吐量和性能。但是,若不加控制和管理的随意使用线程,对系统的性能反而会产生不利的影...

1305
来自专栏Ryan Miao

java并发编程(4)--线程池的使用

转载:http://www.cnblogs.com/dolphin0520/p/3932921.html 一. java中的ThreadPoolExecutor...

3628

扫码关注云+社区

领取腾讯云代金券