专栏首页我是攻城师Spark如何读取一些大数据集到本地机器上

Spark如何读取一些大数据集到本地机器上

最近在使用spark处理分析一些公司的埋点数据,埋点数据是json格式,现在要解析json取特定字段的数据,做一些统计分析,所以有时候需要把数据从集群上拉到driver节点做处理,这里面经常出现的一个问题就是,拉取结果集过大,而驱动节点内存不足,经常导致OOM,也就是我们常见的异常:

这种写法的代码一般如下:

上面的这种写法,基本原理就是一次性把所有分区的数据,全部读取到driver节点上,然后开始做处理,所以数据量大的时候,经常会出现内存溢出情况。

(问题一)如何避免这种情况?

分而治之,每次只拉取一个分区的数据到驱动节点上,处理完之后,再处理下一个分数据的数据。

(问题二)如果单个分区的数据已经大到内存装不下怎么办?

给数据集增加更多的分区,让大分区变成多个小分区。

(问题三)如果结果集数据大于内存的大小怎么办?

要么增加驱动节点的内存,要么给每个分区的数据都持久化本地文件上,不再内存中维护

下面来看下关键问题,如何修改spark的rdd分区数量?

我们知道在spark里面RDD是数据源的抽象模型,RDD里面实际上是把一份大数据源切分成了多个分区数据,然后来并行处理这份大数据集。

默认情况下如果Spark从HDFS上加载数据,默认分区个数是按照HDFS的block size来切分的,当然我们在加载的时候可以指定的分区个数。

如果在加载时不指定分区个数,spark里面还提供了两个函数来进行重分区:

接着我们来看下coalesce函数和repartition函数的区别:

通过查看源码得知repartition函数内部实际上是调用了coalesce函数第二个参数等于true时的封装。所以我们重点来关注下coalesce函数即可:

coalesce的第一个参数是修改后的分区个数

coalesce的第二个参数是控制是否需要shuffle

举一个例子:

当前我们RDD的分区个数是100:

(1)如果要变成10,应该使用

(2)如果要变成300,应该使用

(3)如果要变成1,应该使用

这里解释一下:

分区数从多变少,一般是不需要开启shuffle的,这样性能最高,因为不需要跨网络混洗数据,当然你也可以开启shuffle在特定场景下,如分区数据极其不均衡。但建议一般不要使用。

分区数从少变多,必须开启shuffle,如果不开启那么分区数据是不会改变的,由少变多必须得重新混洗数据才能变多,这里需要注意一点,如果数据量特别少,那么会有一些分区的数据是空。

最后的例子是一种极端场景,如果从多变成1,不开启shuffle,那么可能就个别节点计算压力特别大,集群资源不能充分利用,所以有必要开启shuffle,加速合并计算的流程。

明白了如何改变rdd的分区个数之后,我们就可以文章开头遇到的问题结合起来,拉取大量数据到驱动节点上,如果整体数据集太大,我们就可以增加分区个数,循环拉取,但这里面需要根据具体的场景来设置分区个数,因为分区个数越多,在spark里面生成的task数目就越多,task数目太多也会影响实际的拉取效率,在本案例中,从hdfs上读取的数据默认是144个分区,大约1G多点数据,没有修改分区个数的情况下处理时间大约10分钟,在调整分区个数为10的情况下,拉取时间大约在1-2分钟之间,所以要根据实际情况进行调整。

文章开始前的代码优化后的如下:

最后在看下,spark任务的提交命令:

这里面主要关注参数:

单次拉取数据结果集的最大字节数,以及驱动节点的内存,如果在进行大结果集下拉时,需要特别注意下这两个参数的设置。

参考文档:

https://spark.apache.org/docs/2.2.0/api/scala/index.html#org.apache.spark.rdd.RDD

https://spark.apache.org/docs/latest/configuration.html

https://stackoverflow.com/questions/21698443/spark-best-practice-for-retrieving-big-data-from-rdd-to-local-machin

本文分享自微信公众号 - 我是攻城师(woshigcs),作者:woshigcs

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-01-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 如何使用neo4j存储树形无限级菜单

    我是攻城师
  • 数据结构与数据类型的区别,联系,本质?

    数据结构与数据类型相信我们并不陌生,在日常开发中天天都能接触到,但如果要让你解释一下它们的本质区别和联系,你是否能准确的描述呢?

    我是攻城师
  • 如何管理Spark Streaming消费Kafka的偏移量(二)

    我是攻城师
  • ClickHouse|MergeTree引擎之数据分区

    前面通过 一文了解ClickHouse 介绍过ClickHouse,特性,结构,使用场景。自己并未完全深入学习clickhouse,因为公司打算小范围使用Cl...

    用户1278550
  • 分而治之:从多列到自动Oracle 12.2 分区新特性抢先一览

    何剑敏 Oracle ACS华南区售后团队,首席技术工程师 曾供职于中国联通信息计费部、卓望数码、IBM。现供职于Oracle ACS华南区售后团队,首席技术...

    数据和云
  • Linux命令

    参考:https://hadoop.apache.org/docs/r1.0.4/cn/hdfs_shell.html#mv

    杨肆月
  • 【论文翻译】CubeSLAM: Monocular 3D Object SLAM

    它发表在2019年的IEEE上,它用单目相机实现了物体级的建图、定位、动态物体跟踪.

    当SLAM遇见小王同学
  • hello大皮——微型 python web 框架:Bottle (一)

    Bottle 是一个非常小巧但高效的微型 Python Web 框架,它被设计为仅仅只有一个文件的Python模块,并且除Python标准库外,它不依赖于任何第...

    用户5908113
  • .NET 基金会项目介绍-WCF

    WCF 包含一组面向客户端的类库,它使得基于 .NET Core 构建的应用能够调用 WCF 服务。

    newbe36524
  • 在Mysql中CHAR和VARCHAR如何选择?给定的长度到底是用来干什么的?

    在MySQL数据库中,用的最多的字符型数据类型就是Varchar和Char.。这两种数据类型虽然都是用来存放字符型数据,但是无论从结构还是从数据的保存方式来看,...

    居士

扫码关注云+社区

领取腾讯云代金券