专栏首页大数据文摘手把手|如何用Python绘制JS地图?

手把手|如何用Python绘制JS地图?

编译:佘彦遥 程序注释:席雄芬 校对:丁雪 原文链接:https://github.com/python-visualization/folium/blob/master/README.rst

Folium是建立在Python生态系统的数据整理(Datawrangling)能力和Leaflet.js库的映射能力之上的开源库。用Python处理数据,然后用Folium将它在Leaflet地图上进行可视化。

概念

Folium能够将通过Python处理后的数据轻松地在交互式的Leaflet地图上进行可视化展示。它不单单可以在地图上展示数据的分布图,还可以使用Vincent/Vega在地图上加以标记。

这个开源库中有许多来自OpenStreetMap、MapQuest Open、MapQuestOpen Aerial、Mapbox和Stamen的内建地图元件,而且支持使用Mapbox或Cloudmade的API密钥来定制个性化的地图元件。Folium支持GeoJSON和TopoJSON两种文件格式的叠加,也可以将数据连接到这两种文件格式的叠加层,最后可使用color-brewer配色方案创建分布图。

安装

安装folium包

开始创建地图

创建底图,传入起始坐标到Folium地图中:

importfolium

map_osm= folium.Map(location=[45.5236, -122.6750]) #输入坐标

map_osm.create_map(path='osm.html')

Folium默认使用OpenStreetMap元件,但是Stamen Terrain, Stamen Toner, Mapbox Bright 和MapboxControl空间元件是内置的:

#输入位置,tiles,缩放比例

stamen =folium.Map(location=[45.5236, -122.6750], tiles='Stamen Toner',zoom_start=13)

stamen.create_map(path='stamen_toner.html')#保存图片

Folium也支持Cloudmade 和 Mapbox的个性化定制地图元件,只需简单地传入API_key :

custom =folium.Map(location=[45.5236, -122.6750], tiles='Mapbox',

API_key='wrobstory.map-12345678')

最后,Folium支持传入任何与Leaflet.js兼容的个性化地图元件:

tileset= r'http://{s}.tiles.yourtiles.com/{z}/{x}/{y}.png'

map =folium.Map(location=[45.372, -121.6972], zoom_start=12,

tiles=tileset, attr='My DataAttribution')

地图标记

Folium支持多种标记类型的绘制,下面从一个简单的Leaflet类型的位置标记弹出文本开始:

map_1 =folium.Map(location=[45.372, -121.6972], zoom_start=12,

tiles='Stamen Terrain')

map_1.simple_marker([45.3288,-121.6625], popup='Mt. Hood Meadows')#文字标记

map_1.simple_marker([45.3311,-121.7113], popup='Timberline Lodge')

map_1.create_map(path='mthood.html')

Folium支持多种颜色和标记图标类型:

map_1 =folium.Map(location=[45.372, -121.6972], zoom_start=12,tiles='Stamen Terrain')

map_1.simple_marker([45.3288,-121.6625], popup='Mt. Hood Meadows',marker_icon='cloud') #标记图标类型为云

map_1.simple_marker([45.3311,-121.7113], popup='Timberline Lodge',marker_color='green') #标记颜色为绿色

map_1.simple_marker([45.3300,-121.6823], popup='Some OtherLocation',marker_color='red',marker_icon='info-sign')

#标记颜色为红色,标记图标为“info-sign”)

map_1.create_map(path='iconTest.html')

Folium也支持使用个性化的尺寸和颜色进行圆形标记:

map_2 =folium.Map(location=[45.5236, -122.6750], tiles='Stamen Toner',

zoom_start=13)

map_2.simple_marker(location=[45.5244,-122.6699], popup='The Waterfront')

简单树叶类型标记

map_2.circle_marker(location=[45.5215,-122.6261], radius=500,

popup='Laurelhurst Park',line_color='#3186cc',

fill_color='#3186cc')#圆形标记

map_2.create_map(path='portland.html')

Folium有一个简便的功能可以使经/纬度悬浮于地图上:

map_3 =folium.Map(location=[46.1991, -122.1889], tiles='Stamen Terrain',zoom_start=13)

map_3.lat_lng_popover()

map_3.create_map(path='sthelens.html')

Click-for-marker功能允许标记动态放置:

map_4 =folium.Map(location=[46.8527, -121.7649], tiles='Stamen Terrain',zoom_start=13)

map_4.simple_marker(location=[46.8354,-121.7325], popup='Camp Muir')

map_4.click_for_marker(popup='Waypoint')

map_4.create_map(path='mtrainier.html')

Folium也支持来自Leaflet-DVF的Polygon(多边形)标记集:

map_5 =folium.Map(location=[45.5236, -122.6750], zoom_start=13)

map_5.polygon_marker(location=[45.5012,-122.6655], popup='Ross Island Bridge',fill_color='#132b5e', num_sides=3,radius=10)#三边形标记

map_5.polygon_marker(location=[45.5132,-122.6708], popup='Hawthorne Bridge',fill_color='#45647d', num_sides=4,radius=10)#四边形标记

map_5.polygon_marker(location=[45.5275,-122.6692], popup='Steel Bridge',fill_color='#769d96', num_sides=6, radius=10)#四边形标记

map_5.polygon_marker(location=[45.5318,-122.6745], popup='Broadway Bridge',fill_color='#769d96', num_sides=8,radius=10) #八边形标记

map_5.create_map(path='bridges.html')

Vincent/Vega标记

Folium能够使用vincent 进行任何类型标记,并悬浮在地图上。

buoy_map= folium.Map(location=[46.3014, -123.7390], zoom_start=7,

tiles='StamenTerrain')

buoy_map.polygon_marker(location=[47.3489,-124.708], fill_color='#43d9de',radius=12, popup=(vis1, 'vis1.json'))

buoy_map.polygon_marker(location=[44.639,-124.5339], fill_color='#43d9de',radius=12, popup=(vis2, 'vis2.json'))

buoy_map.polygon_marker(location=[46.216,-124.1280], fill_color='#43d9de',radius=12, popup=(vis3, 'vis3.json'))

GeoJSON/TopoJSON层叠加

GeoJSON 和TopoJSON层都可以导入到地图,不同的层可以在同一张地图上可视化出来:

geo_path= r'data/antarctic_ice_edge.json'

topo_path= r'data/antarctic_ice_shelf_topo.json'

ice_map= folium.Map(location=[-59.1759, -11.6016],tiles='Mapbox Bright', zoom_start=2)

ice_map.geo_json(geo_path=geo_path)#导入geoJson层

ice_map.geo_json(geo_path=topo_path,topojson='objects.antarctic_ice_shelf')#导入Toposon层

ice_map.create_map(path='ice_map.html')

分布图

Folium允许PandasDataFrames/Series类型和Geo/TopoJSON类型之间数据转换。Color Brewer 颜色方案也是内建在这个库,可以直接导入快速可视化不同的组合:

importfolium

importpandas as pd

state_geo= r'data/us-states.json'#地理位置文件

state_unemployment= r'data/US_Unemployment_Oct2012.csv'#美国失业率文件

state_data= pd.read_csv(state_unemployment)

#LetFolium determine the scale

map =folium.Map(location=[48, -102], zoom_start=3)

map.geo_json(geo_path=state_geo,data=state_data,

columns=['State', 'Unemployment'],

key_on='feature.id',

fill_color='YlGn',fill_opacity=0.7, line_opacity=0.2,

legend_name='Unemployment Rate(%)')

map.create_map(path='us_states.html')

基于D3阈值尺度,Folium在右上方创建图例,通过分位数创建最佳猜测值,导入设定的阈值很简单:

map.geo_json(geo_path=state_geo,data=state_data,

columns=['State', 'Unemployment'],

threshold_scale=[5, 6, 7, 8, 9,10],

key_on='feature.id',

fill_color='BuPu',fill_opacity=0.7, line_opacity=0.5,

legend_name='Unemployment Rate(%)',

reset=True)

map.create_map(path='us_states.html')

通过Pandas DataFrame进行数据处理,可以快速可视化不同的数据集。下面的例子中,df DataFrame包含6列不同的经济数据,我们将在下面可视化一部分数据:

2011年就业率分布图

map_1 =folium.Map(location=[48, -102], zoom_start=3)

map_1.geo_json(geo_path=county_geo,data_out='data1.json', data=df,

columns=['GEO_ID','Employed_2011'],key_on='feature.id',

fill_color='YlOrRd',fill_opacity=0.7, line_opacity=0.3,

topojson='objects.us_counties_20m')#2011就业率分布图

map_1.create_map(path='map_1.html')

2011年失业率分布图

map_2 =folium.Map(location=[40, -99], zoom_start=4)

map_2.geo_json(geo_path=county_geo,data_out='data2.json', data=df,

columns=['GEO_ID','Unemployment_rate_2011'],

key_on='feature.id',

threshold_scale=[0, 5, 7, 9, 11,13],

fill_color='YlGnBu', line_opacity=0.3,

legend_name='Unemployment Rate2011 (%)',

topojson='objects.us_counties_20m')#2011失业率分布图

map_2.create_map(path='map_2.html')

2011年中等家庭收入分布图

map_3 =folium.Map(location=[40, -99], zoom_start=4)

map_3.geo_json(geo_path=county_geo,data_out='data3.json', data=df,

columns=['GEO_ID','Median_Household_Income_2011'],

key_on='feature.id',

fill_color='PuRd',line_opacity=0.3,

legend_name='Median Household Income2011 ($)',

topojson='objects.us_counties_20m')#2011中等家庭收入分布图

map_3.create_map(path='map_3.html')

本文分享自微信公众号 - 大数据文摘(BigDataDigest),作者:大数据文摘

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2016-01-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 亚马逊CTO对云计算发展八大趋势的判断

    大数据文摘
  • 2015年中国在线医疗行业研究报告(多图)

    大数据文摘
  • 业界 | 技术瓶颈,居民吐槽:Waymo的无人车理想和糟心现实

    毋容置疑,谷歌旗下的Waymo是世界领先的无人驾驶开发公司。其在郊区环境下的无人车开发领域成就斐然。前段时间,Waymo已经表示将在今年年底前向亚利桑那州府凤凰...

    大数据文摘
  • Go中map数据类型3点小知识

    1、map数据类型初始化 两种方式:map[string]string{}或make(map[string]string) 2、未初始化的map是nil,它与一...

    李海彬
  • 初识mapbox GL

    最近由于项目的需求,借此机会对mapbox GL做了一个系统的学习,同时也对整个学习过程做一个记录,一方面留作自用,另一方面也希望看到此文的人在学习mapbox...

    lzugis
  • Go中map数据类型3点小知识

    1、map数据类型初始化 两种方式:map[string]string{}或make(map[string]string) 2、未初始化的map是nil,它与一...

    李海彬
  • Arcgis for JS之地图自适应调整

    概述:本节讲述的内容为当浏览器大小发生变化或者地图展示区域的大小发生变化时,地图的自适应调整。地图的自适应常见于以下几种情况:1、系统中有收缩或者全屏的按钮;2...

    lzugis
  • 《coredump问题原理探究》windows版7.3节map

    版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xuzhina/article/detai...

    血狼
  • Golang 语言--map 用range遍历不能保证顺序输出

    按照之前我对map的理解,map中的数据应该是有序二叉树的存储顺序,正常的遍历也应该是有序的遍历和输出,但实际试了一下,却发现并非如此,网上查了下,发现从Go1...

    李海彬
  • golang-101-hacks(18)——map类型访问

    Map是一种指向哈希表的引用类型,可以使用map构造一个“键值”类型的数据库,这在实际编程中非常高效。例如,下面的代码是统计切片中每个元素的总数:

    羊羽shine

扫码关注云+社区

领取腾讯云代金券