前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >手把手:Python加密货币价格预测9步走,视频+代码

手把手:Python加密货币价格预测9步走,视频+代码

作者头像
大数据文摘
发布2018-05-23 10:55:17
9361
发布2018-05-23 10:55:17
举报
文章被收录于专栏:大数据文摘

YouTube网红小哥Siraj Raval系列视频又和大家见面啦!今天要讲的是加密货币价格预测,包含大量代码,还用一个视频详解具体步骤,不信你看了还学不会!

点击观看详解视频

时长22分钟

有中文字幕

视频内容

预测加密货币价格其实很简单,用Python+Keras,再来一个循环神经网络(确切说是双向LSTM),只需要9步就可以了!比特币以太坊价格预测都不在话下。

这9个步骤是:

  • 数据处理
  • 建模
  • 训练模型
  • 测试模型
  • 分析价格变化
  • 分析价格百分比变化
  • 比较预测值和实际数据
  • 计算模型评估指标
  • 结合在一起:可视化

数据处理

导入Keras、Scikit learn的metrics、numpy、pandas、matplotlib这些我们需要的库。

代码语言:javascript
复制
## Keras for deep learning
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
from keras.layers import Bidirectional
from keras.models import Sequential

## Scikit learn for mapping metrics
from sklearn.metrics import mean_squared_error

#for logging
import time

##matrix math
import numpy as np
import math

##plotting
import matplotlib.pyplot as plt

##data processing
import pandas as pd

首先,要对数据进行归一化处理。关于数据处理的原则,有张大图,大家可以在大数据文摘公众号后台对话框内回复“加密货币”查看高清图。

代码语言:javascript
复制
def load_data(filename, sequence_length):
    """
    Loads the bitcoin data
    
    Arguments:
    filename -- A string that represents where the .csv file can be located
    sequence_length -- An integer of how many days should be looked at in a row
    
    Returns:
    X_train -- A tensor of shape (2400, 49, 35) that will be inputed into the model to train it
    Y_train -- A tensor of shape (2400,) that will be inputed into the model to train it
    X_test -- A tensor of shape (267, 49, 35) that will be used to test the model's proficiency
    Y_test -- A tensor of shape (267,) that will be used to check the model's predictions
    Y_daybefore -- A tensor of shape (267,) that represents the price of bitcoin the day before each Y_test value
    unnormalized_bases -- A tensor of shape (267,) that will be used to get the true prices from the normalized ones
    window_size -- An integer that represents how many days of X values the model can look at at once
    """
    #Read the data file
    raw_data = pd.read_csv(filename, dtype = float).values
    
    #Change all zeros to the number before the zero occurs
    for x in range(0, raw_data.shape[0]):
        for y in range(0, raw_data.shape[1]):
            if(raw_data[x][y] == 0):
                raw_data[x][y] = raw_data[x-1][y]
    
    #Convert the file to a list
    data = raw_data.tolist()
    
    #Convert the data to a 3D array (a x b x c) 
    #Where a is the number of days, b is the window size, and c is the number of features in the data file
    result = []
    for index in range(len(data) - sequence_length):
        result.append(data[index: index + sequence_length])
    
    #Normalizing data by going through each window
    #Every value in the window is divided by the first value in the window, and then 1 is subtracted
    d0 = np.array(result)
    dr = np.zeros_like(d0)
    dr[:,1:,:] = d0[:,1:,:] / d0[:,0:1,:] - 1
    
    #Keeping the unnormalized prices for Y_test
    #Useful when graphing bitcoin price over time later
    start = 2400
    end = int(dr.shape[0] + 1)
    unnormalized_bases = d0[start:end,0:1,20]
    
    #Splitting data set into training (First 90% of data points) and testing data (last 10% of data points)
    split_line = round(0.9 * dr.shape[0])
    training_data = dr[:int(split_line), :]
    
    #Shuffle the data
    np.random.shuffle(training_data)
    
    #Training Data
    X_train = training_data[:, :-1]
    Y_train = training_data[:, -1]
    Y_train = Y_train[:, 20]
    
    #Testing data
    X_test = dr[int(split_line):, :-1]
    Y_test = dr[int(split_line):, 49, :]
    Y_test = Y_test[:, 20]

    #Get the day before Y_test's price
    Y_daybefore = dr[int(split_line):, 48, :]
    Y_daybefore = Y_daybefore[:, 20]
    
    #Get window size and sequence length
    sequence_length = sequence_length
    window_size = sequence_length - 1 #because the last value is reserved as the y value
    
    return X_train, Y_train, X_test, Y_test, Y_daybefore, unnormalized_bases, window_size

建模

我们用到的是一个3层RNN,dropout率20%。

双向RNN基于这样的想法:时间t的输出不仅依赖于序列中的前一个元素,而且还可以取决于未来的元素。比如,要预测一个序列中缺失的单词,需要查看左侧和右侧的上下文。双向RNN是两个堆叠在一起的RNN,根据两个RNN的隐藏状态计算输出。

举个例子,这句话里缺失的单词gym要查看上下文才能知道(文摘菌:everyday?):

I go to the ( ) everyday to get fit.

代码语言:javascript
复制
def initialize_model(window_size, dropout_value, activation_function, loss_function, optimizer):
    """
    Initializes and creates the model to be used
    
    Arguments:
    window_size -- An integer that represents how many days of X_values the model can look at at once
    dropout_value -- A decimal representing how much dropout should be incorporated at each level, in this case 0.2
    activation_function -- A string to define the activation_function, in this case it is linear
    loss_function -- A string to define the loss function to be used, in the case it is mean squared error
    optimizer -- A string to define the optimizer to be used, in the case it is adam
    
    Returns:
    model -- A 3 layer RNN with 100*dropout_value dropout in each layer that uses activation_function as its activation
             function, loss_function as its loss function, and optimizer as its optimizer
    """
    #Create a Sequential model using Keras
    model = Sequential()

    #First recurrent layer with dropout
    model.add(Bidirectional(LSTM(window_size, return_sequences=True), input_shape=(window_size, X_train.shape[-1]),))
    model.add(Dropout(dropout_value))

    #Second recurrent layer with dropout
    model.add(Bidirectional(LSTM((window_size*2), return_sequences=True)))
    model.add(Dropout(dropout_value))

    #Third recurrent layer
    model.add(Bidirectional(LSTM(window_size, return_sequences=False)))

    #Output layer (returns the predicted value)
    model.add(Dense(units=1))
    
    #Set activation function
    model.add(Activation(activation_function))

    #Set loss function and optimizer
    model.compile(loss=loss_function, optimizer=optimizer)
    
    return model

训练模型

这里取batch size = 1024,epoch times = 100。我们需要最小化均方误差MSE。

代码语言:javascript
复制
def fit_model(model, X_train, Y_train, batch_num, num_epoch, val_split):
    """
    Fits the model to the training data
    
    Arguments:
    model -- The previously initalized 3 layer Recurrent Neural Network
    X_train -- A tensor of shape (2400, 49, 35) that represents the x values of the training data
    Y_train -- A tensor of shape (2400,) that represents the y values of the training data
    batch_num -- An integer representing the batch size to be used, in this case 1024
    num_epoch -- An integer defining the number of epochs to be run, in this case 100
    val_split -- A decimal representing the proportion of training data to be used as validation data
    
    Returns:
    model -- The 3 layer Recurrent Neural Network that has been fitted to the training data
    training_time -- An integer representing the amount of time (in seconds) that the model was training
    """
    #Record the time the model starts training
    start = time.time()

    #Train the model on X_train and Y_train
    model.fit(X_train, Y_train, batch_size= batch_num, nb_epoch=num_epoch, validation_split= val_split)

    #Get the time it took to train the model (in seconds)
    training_time = int(math.floor(time.time() - start))
    return model, training_time

测试模型

代码语言:javascript
复制
def test_model(model, X_test, Y_test, unnormalized_bases):
    """
    Test the model on the testing data
    
    Arguments:
    model -- The previously fitted 3 layer Recurrent Neural Network
    X_test -- A tensor of shape (267, 49, 35) that represents the x values of the testing data
    Y_test -- A tensor of shape (267,) that represents the y values of the testing data
    unnormalized_bases -- A tensor of shape (267,) that can be used to get unnormalized data points
    
    Returns:
    y_predict -- A tensor of shape (267,) that represnts the normalized values that the model predicts based on X_test
    real_y_test -- A tensor of shape (267,) that represents the actual prices of bitcoin throughout the testing period
    real_y_predict -- A tensor of shape (267,) that represents the model's predicted prices of bitcoin
    fig -- A branch of the graph of the real predicted prices of bitcoin versus the real prices of bitcoin
    """
    #Test the model on X_Test
    y_predict = model.predict(X_test)

    #Create empty 2D arrays to store unnormalized values
    real_y_test = np.zeros_like(Y_test)
    real_y_predict = np.zeros_like(y_predict)

    #Fill the 2D arrays with the real value and the predicted value by reversing the normalization process
    for i in range(Y_test.shape[0]):
        y = Y_test[i]
        predict = y_predict[i]
        real_y_test[i] = (y+1)*unnormalized_bases[i]
        real_y_predict[i] = (predict+1)*unnormalized_bases[i]

    #Plot of the predicted prices versus the real prices
    fig = plt.figure(figsize=(10,5))
    ax = fig.add_subplot(111)
    ax.set_title("Bitcoin Price Over Time")
    plt.plot(real_y_predict, color = 'green', label = 'Predicted Price')
    plt.plot(real_y_test, color = 'red', label = 'Real Price')
    ax.set_ylabel("Price (USD)")
    ax.set_xlabel("Time (Days)")
    ax.legend()
    
    return y_predict, real_y_test, real_y_predict, fig

分析价格变化

代码语言:javascript
复制
def price_change(Y_daybefore, Y_test, y_predict):
    """
    Calculate the percent change between each value and the day before
    
    Arguments:
    Y_daybefore -- A tensor of shape (267,) that represents the prices of each day before each price in Y_test
    Y_test -- A tensor of shape (267,) that represents the normalized y values of the testing data
    y_predict -- A tensor of shape (267,) that represents the normalized y values of the model's predictions
    
    Returns:
    Y_daybefore -- A tensor of shape (267, 1) that represents the prices of each day before each price in Y_test
    Y_test -- A tensor of shape (267, 1) that represents the normalized y values of the testing data
    delta_predict -- A tensor of shape (267, 1) that represents the difference between predicted and day before values
    delta_real -- A tensor of shape (267, 1) that represents the difference between real and day before values
    fig -- A plot representing percent change in bitcoin price per day,
    """
    #Reshaping Y_daybefore and Y_test
    Y_daybefore = np.reshape(Y_daybefore, (-1, 1))
    Y_test = np.reshape(Y_test, (-1, 1))

    #The difference between each predicted value and the value from the day before
    delta_predict = (y_predict - Y_daybefore) / (1+Y_daybefore)

    #The difference between each true value and the value from the day before
    delta_real = (Y_test - Y_daybefore) / (1+Y_daybefore)

    #Plotting the predicted percent change versus the real percent change
    fig = plt.figure(figsize=(10, 6))
    ax = fig.add_subplot(111)
    ax.set_title("Percent Change in Bitcoin Price Per Day")
    plt.plot(delta_predict, color='green', label = 'Predicted Percent Change')
    plt.plot(delta_real, color='red', label = 'Real Percent Change')
    plt.ylabel("Percent Change")
    plt.xlabel("Time (Days)")
    ax.legend()
    plt.show()
    
    return Y_daybefore, Y_test, delta_predict, delta_real, fig

分析价格百分比变化

代码语言:javascript
复制
def binary_price(delta_predict, delta_real):
    """
    Converts percent change to a binary 1 or 0, where 1 is an increase and 0 is a decrease/no change
    
    Arguments:
    delta_predict -- A tensor of shape (267, 1) that represents the predicted percent change in price
    delta_real -- A tensor of shape (267, 1) that represents the real percent change in price
    
    Returns:
    delta_predict_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_predict
    delta_real_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_real
    """
    #Empty arrays where a 1 represents an increase in price and a 0 represents a decrease in price
    delta_predict_1_0 = np.empty(delta_predict.shape)
    delta_real_1_0 = np.empty(delta_real.shape)

    #If the change in price is greater than zero, store it as a 1
    #If the change in price is less than zero, store it as a 0
    for i in range(delta_predict.shape[0]):
        if delta_predict[i][0] > 0:
            delta_predict_1_0[i][0] = 1
        else:
            delta_predict_1_0[i][0] = 0
    for i in range(delta_real.shape[0]):
        if delta_real[i][0] > 0:
            delta_real_1_0[i][0] = 1
        else:
            delta_real_1_0[i][0] = 0    

    return delta_predict_1_0, delta_real_1_0

比较预测值和实际数据

代码语言:javascript
复制
def find_positives_negatives(delta_predict_1_0, delta_real_1_0):
    """
    Finding the number of false positives, false negatives, true positives, true negatives
    
    Arguments: 
    delta_predict_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_predict
    delta_real_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_real
    
    Returns:
    true_pos -- An integer that represents the number of true positives achieved by the model
    false_pos -- An integer that represents the number of false positives achieved by the model
    true_neg -- An integer that represents the number of true negatives achieved by the model
    false_neg -- An integer that represents the number of false negatives achieved by the model
    """
    #Finding the number of false positive/negatives and true positives/negatives
    true_pos = 0
    false_pos = 0
    true_neg = 0
    false_neg = 0
    for i in range(delta_real_1_0.shape[0]):
        real = delta_real_1_0[i][0]
        predicted = delta_predict_1_0[i][0]
        if real == 1:
            if predicted == 1:
                true_pos += 1
            else:
                false_neg += 1
        elif real == 0:
            if predicted == 0:
                true_neg += 1
            else:
                false_pos += 1
    return true_pos, false_pos, true_neg, false_neg

计算模型评估指标

代码语言:javascript
复制
def calculate_statistics(true_pos, false_pos, true_neg, false_neg, y_predict, Y_test):
   """
   Calculate various statistics to assess performance
   
   Arguments:
   true_pos -- An integer that represents the number of true positives achieved by the model
   false_pos -- An integer that represents the number of false positives achieved by the model
   true_neg -- An integer that represents the number of true negatives achieved by the model
   false_neg -- An integer that represents the number of false negatives achieved by the model
   Y_test -- A tensor of shape (267, 1) that represents the normalized y values of the testing data
   y_predict -- A tensor of shape (267, 1) that represents the normalized y values of the model's predictions
   
   Returns:
   precision -- How often the model gets a true positive compared to how often it returns a positive
   recall -- How often the model gets a true positive compared to how often is hould have gotten a positive
   F1 -- The weighted average of recall and precision
   Mean Squared Error -- The average of the squares of the differences between predicted and real values
   """
   precision = float(true_pos) / (true_pos + false_pos)
   recall = float(true_pos) / (true_pos + false_neg)
   F1 = float(2 * precision * recall) / (precision + recall)
   #Get Mean Squared Error
   MSE = mean_squared_error(y_predict.flatten(), Y_test.flatten())

   return precision, recall, F1, MSE

结合在一起:可视化

终于可以看看我们的成果啦!

首先是预测价格vs实际价格:

代码语言:javascript
复制
y_predict, real_y_test, real_y_predict, fig1 = test_model(model, X_test, Y_test, unnormalized_bases)

#Show the plot
plt.show(fig1)

然后是预测的百分比变化vs实际的百分比变化,值得注意的是,这里的预测相对实际来说波动更大,这是模型可以提高的部分:

代码语言:javascript
复制
Y_daybefore, Y_test, delta_predict, delta_real, fig2 = price_change(Y_daybefore, Y_test, y_predict)

#Show the plot
plt.show(fig2)

最终模型表现是这样的:

代码语言:javascript
复制
Precision: 0.62
Recall: 0.553571428571
F1 score: 0.584905660377
Mean Squared Error: 0.0430756924477

怎么样,看完有没有跃跃欲试呢?

代码下载地址:

https://github.com/llSourcell/ethereum_future/blob/master/A%20Deep%20Learning%20Approach%20to%20Predicting%20Cryptocurrency%20Prices.ipynb

原视频地址:

https://www.youtube.com/watch?v=G5Mx7yYdEhE

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-05-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据文摘 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档