小心陷阱!品牌营销数据管理平台(DMP)搭建风险

转自:时趣公众号(SocialTouchSCRM) 作者:王绪刚

大数据,是概念,是行业,是方法,是全社会集中讨论的新闻热点,随着大数据的不断探索,其价值被不断挖掘,展现,从而形成的新兴商业模式也引发了品牌主们的深思:数从何来?如何控制?如何利用?正是这种对流量掌控的渴望,加之对自有数据管理的需求,DMP(data management platform) 逐渐成为品牌主们争相尝试和加大投入新宠。

笔者有幸见证过几个早期DMP探索项目的成功与失败,而最近又非常巧合的连续参加了多个国内外知名品牌DMP项目的论证过程,虽然每家企业的行业和诉求不尽相同,却都存在一个惊人一致的现象——迷茫。

这种迷茫一方面来自于对新生事物的不确定性,而另一方面对DMP的种种误解也是造成这种现象的重要原因。那么DMP到底是什么?是帮品牌收集流量的容器?还是可以令“死水”般的数据“变活”,不断产生涟漪和势能的利器?在品牌投资建设DMP之前,需要认清DMP的本质,绕开重重“陷阱”,才能更好的拥抱这种新兴商业模式,不断挖掘利用数据价值,加深,提升与消费者的交流与体验。

在国际上,DMP被定义为“大数据在营销中的落地解决方案和实时消费者互动的基础”(The Data Management Platform: Foundation for Right-Time Customer Engagement:A WINTERBERRY GROUP WHITE PAPER NOVEMBER 2012)。因此DMP不是一个简单的数据采集与存储,它更像是一个懂营销规则的AlphaGo——虽然也是输入了大量的象棋棋谱,但AlphGo核心价值在于利用对不同套路的归类,分析,整理出可以针对不同实际情况做出最优选择的智能反应机制。

同样的,我们把消费者行为数据“灌进去”,DMP应该给出实时互动的策略。 然而,许多DMP项目却忽略了这个本质,盲从与“大数据”的概念,在设计规划阶段就落入了陷阱:

◆ ◆ ◆

陷阱一

错把DT当IT,建设和运营两张皮

虽然DMP采取了许多专业的数据处理技术,但其更大程度上是一个业务驱动型的DT项目。传统意义中的IT项目仅仅涉及到技术层面的交付,而DT则偏向于把数字的东西策略化,利用算法和技术叠加实现营销动作的智能分析及科学指导,所以DMP建设并不仅仅是单纯的IT项目,而是协助品牌建立数据管理架构,形成优化闭环。其核心价值是在营销自动化过程中提升智能决策支持的准确度与效率。

简单来说,就是品牌通过利用DMP的数据收集跟踪,数据整理分析,最后给出数据的可视化展现,科学指导运营决策,以便下一步的智能操作实施。因此其主要功能是数据分析能力,它包括了:

“对历史数据的“实事性”分析,比如对活动效果的监测;对未来趋势的“预测性”分析,比如挖掘潜在性价比高的媒介与意见领袖;针对单个用户的“行动性”分析,比如针对不同的个体,展示个性化的文案与内容等等。”

因此DMP的运营,核心是需要强大的个体消费者模型构建的能力,也就是一方面对客户商业的理解,一方面对数学统计模型的理解。并且这个建模的过程,也不是一蹴而就的一次性的过程,而是需要持续的根据数据丰富度和质量的变化,动态的进行持续不断的调整。

只有将二者完美的结合才能勾勒出每个用户的商业价值曲线。单纯的把注意力放在IT平台的选型和搭建上——比如说是用Hadoop还是用Spark等大数据开源系统,这样的注意力可能从一开始就决定了搭建后的平台,往往也无法在业务中发挥实质性的作用。

◆ ◆ ◆

陷阱二

饮鸩止渴,过分依赖外部流量数据

对于大部分品牌主来说,总希望获取更多的外部流量,却没有建立自身的留存,互动和转化的能力。如同一座水库豪掷千金引水入库,任凭可发电的清水变成死水失去价值,流量永远不能化作势能。

更重要的是,很多企业忽略了对自身数据的采集与经营,例如CRM中通过付费推广引入的用户流量,以及用户在自有电商平台中的行为数据。同时,品牌在社交平台上(比如微信,微博)都建立了其自媒体阵地,承担了重要的用户沟通和传播的作用,这些数据更容易从品牌自身出发去构建丰富的目标消费群体的画像,对新流量的获取提供优化。另外一方面,通过数据驱动的方法有效的激励自有用户和粉丝在社交平台上的传播,通过这种老会员带新会员之类的互动活动,可以获得比数倍于付费媒体的效果。

◆ ◆ ◆

陷阱三

单纯的相信第三方可以提供

完整的用户画像信息

任何一个品牌主都希望全面了解自己的消费者,DMP中的用户画像,利用对消费者特征的分析提取,以标签的形式进行罗列,协助给出消费者轮廓的描述,并且通过对相同,相异标签的划分,实现精准定位和智能运营。

因此许多第三方都声称可以提供完整的用户画像。实际上即使BAT(Baidu、Alibaba、Tencent)都无法提供单个消费者的完整生命历程和画像数据。目前网络行为数据量相对完整的就是网络运营商,比如中国移动,联通,电信。虽然他们可以提供已去除个人敏感信息的用户标签,但其数据也只在某些地域的某些号段比较完备,同时因为https加密传输,某些重要的网站行为数据也无法解析。因此单一的第三方数据源都是用户画像或者某类特定人群的数据片段。

◆ ◆ ◆

陷阱四

误认为广告监测数据可以作为用户画像

这是一个经常看到的技术误区。广告监测数据由于可以预先在媒介广告位上埋设代码或者部署SDK,可以获取到巨大数量的数据。虽然量级非常庞大,但是这些技术平台主要是为了进行KPI监测的计算,比如曝光量,点击率等数字指标,而缺少数字背后的用户行为的挖掘。

同时,因为媒介不会主动开放自身的用户非广告类的行为数据,比如阅读、观看、分享、购买等数据,因此,单纯通过比例非常小的广告位展示与点击数据很难构成对媒体用户的真实描述——无论从完整度与准确度上误差都比较大。比如点击了某女明星代言的美妆广告的人群,有很大比例上不是目标受众,而是该女星的男性粉丝。

◆ ◆ ◆

陷阱五

DMP的唯一应用就是广告的精准投放

许多程序化广告投放公司非常推崇DMP的概念,这也导致了许多品牌误以为DMP的唯一作用就是支持广告的再定向和优化。但是随着品牌数字化的发展,它已经从单纯的采集广告渠道数据,到对接自媒体数据、线下交易数据和整合第三方数据。其作用也从消费者洞察,投放优化,拓展到全渠道消费者互动与优化消费者体验等领域。

知易行难,构建DMP是利用数据驱动营销的关键一步,从最快能够发挥数据价值的角度出发,品牌应该丢掉幻想,采取更加实际性的策略。在这笔者提出三条来自于实践的建议:

一、分别建立PC,移动与社交的三类数据管理平台,而不要希望一蹴而就建立一个大一统的DMP。

考虑应用场景和用户行为的闭环,将DMP分拆为针对PC,移动与社交数据的三个系统。首先这三个渠道是品牌可以获取客户数据的主要接触点,但是三个系统的数据在短期内很难实现贯通,同时场景与作用也各不相同。因此为了更好的让一个消费者的行为形成闭环,并能够逐步优化数据和模型策略,可以考虑在短期内建立针对三类数据的独立系统,并慢慢实现贯通。

在PC端,主要的作用是利用数据优化广告策略,提升品牌的曝光效果,受众数据的多品类再定向,媒介渠道的优化。这时候可以发挥第三方数据监测公司长期积累的数据价值。

在移动端,因为可以获得相对稳定的设备ID,个体数据的积累相对于PC端可以更好的追踪用户的完整的行为路径和上下文信息。因此除了进行再定向投放以外。还可以结合用户画像与上下文信息,实现体验更加友好的原生广告——比如我们在微博,微信朋友圈中看到的信息流广告。同时移动场景下的天然社交属性,可以顺畅的鼓励分享,提升ROI,吸引关注微信,将流量转化为留存。

在社交环境中,数据的核心价值是与SCRM整合,在利用社交渠道,实现一对一的用户沟通,并挖掘粉丝的影响力价值,激励传播,充分利用自媒体(Own Media)和赚取媒体(Earn Media)的价值,来降低对付费媒介的依赖。同时,通过自媒体这种投入较低的平台沉淀出互动与内容的模型,可以激发付费媒体最大化的效果。

二、从项目目标设计的时候,就明确DMP应该是一个运营性质的项目。

前面的分析已经说过,DMP不仅仅是一个IT项目,与传统流程自动化工具不同,DMP包括了很多人工智能的算法,核心是对客户商业场景和问题的理解,并转化成数据模型。

这样的模型需要了解行业和应用场景的数据分析人员与营销人员在日常业务运营中通过人工优化和机器学习的方法来共同建立和完善出来。比如,在DMP中,需要根据用户的行为来建立流失预警模型,这样的模型需要根据行业根据不同的互动渠道特征,比如微信,微博,以及线下活动来调整不同行为的时间权重。因此建议在系统平台上线后,由运营人员按照DMP方法论来优化业务模型,由数据分析与建模人员来优化用户画像模型,才能达到越做越好的目的。

三、以第一方数据为主,建立用户画像标准,兼容第二方与第三方数据。

无论是媒介的标签数据,还是第三方数据源的数据,都没有行业性的标准,这也就很难实现不同数据源的人群匹配。对于品牌来说,购买意向越高的用户数据,越有价值。因此建议通过第一方数据的维度来建立标准,才能将其他来源的数据整合起来。

我们以游戏和汽车两个行业为例,从游戏行业中抽取出的高额消费用户,对汽车的购买欲望是不可预估的。因此作为汽车品牌来说,与其盲目的耗资引进大量第二,第三方数据,不如先练好“内功”,深度挖掘本品牌以及汽车行业的数据特质,并把与品牌更匹配的高价值用户数据整合为成功经验模块。当品牌到达这个阶段,也就对自有数据及所需数据有了充分的认知,这时再与第二,第三方引入的数据相结合,才能充分展现数据价值。

数据驱动营销的探索才刚刚开始,中国DMP的数据环境、营销实践,事实上已经在某些方面超过了国际同行。时趣打造的SmartDMP,整合SCRM及数据运营能力,帮助3C、美妆、旅游、汽车、快消等行业品牌,打造智慧营销的整体解决方案。不仅实现了基本的数据收集和归类,更利用长期沉淀的运营经验结合数据模型,形成可执行的科学策略和自动优化的操作指令,协助品牌在流量获取,消费者留存,互动、传播甚至产品创新等多方面,实现数据驱动营销。将外部流量不断转化为品牌势能。

原文发布于微信公众号 - 大数据文摘(BigDataDigest)

原文发表时间:2016-04-22

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏云计算D1net

云计算在人工智能时代仍为主流

1877
来自专栏PPV课数据科学社区

【观点】数据分析经验总结二三点

这是二年以前写的一篇文章,觉得这些内容放在今天依然适用重新分享给大家! 一、掌握基础、更新知识。 基本技术怎么强调都不过分。这里的术更多是(计算机、统计知识...

3274
来自专栏腾讯技术工程官方号的专栏

2017国际体验设计大会 | 用研跨界

导读:7月12-16日,2017年国际体验设计大会在北京国家会议中心举行,来自腾讯用户研究与体验设计部(简称:CDC)的负责人ENYA围绕 “ 用研跨界:线上融...

2266
来自专栏PPV课数据科学社区

一位资深数据分析师的分享

一、掌握基础、更新知识。 基本技术怎么强调都不过分。这里的术更多是(计算机、统计知识), 多年做数据分析、数据挖掘的经历来看、以及业界朋友的交流来看,这点大家深...

2955
来自专栏CDA数据分析师

译文|中小型企业如何从数据可视化中获益?

本文由CDA数据分析研究院翻译,译者:王晨光,转载必须获得本站、原作者、译者的同意,拒绝任何不表明译者及来源的转载! 人们总是倾向于把数据可视化与大品牌和大型企...

2089
来自专栏云计算D1net

企业大数据应从何做起

目前国内外关于大数据的谈论很多,大多是谈运营级别的,或者说从服务端、服务方提得较多一些。笔者要跟大家交流的问题是作为各类企业尤其是客户方的企业来说,大数据跟...

3315
来自专栏BestSDK

搜狗翻译API新增:日、韩、法、俄4语种,支持批量翻译

在全球信息加速产出与传播的当下,语言差异给各领域的开发者带来了诸多难题。如今,搜狗搜索已将前沿的人工智能技术应用于翻译领域,为身处全球各地的开发者提供高质量机器...

53210
来自专栏企鹅号快讯

让工业智能接地气的那些事儿

提到工业智能,总绕不开“大数据”、“云计算”、“人工智能”这样几个关键词。其实还有一个关键词也非常重要,它能够将上述几个关键词穿连起来,让工业智能可以真正实现落...

2148
来自专栏云计算D1net

采用云计算与大数据赢得竞争优势

如今,越来越多的企业将其大数据业务迁移到公共云服务。而企业同时采用云计算和大数据技术将是一种完美的结合。行业分析师和企业IT决策者对此表示认同,这并不奇怪:人们...

4554
来自专栏企鹅号快讯

数据主义,未来一切都将数据化-1

2018年,新年的第一周,老白选了车品觉老师的《数据的本质》一书,想通过书摘和一些个人的愚见,与大家共同成长,从书中寻找价值和共鸣。 老白会竭尽所能每周完成一本...

21210

扫码关注云+社区

领取腾讯云代金券