专栏首页重庆的技术分享区4吴恩达Meachine-Learing之多变量线性回归(Linear-Regression-with-Multiple-Variables

4吴恩达Meachine-Learing之多变量线性回归(Linear-Regression-with-Multiple-Variables

4.1 多维特征(Multiple Features)

目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,…,xn)。

增添更多特征后,我们引入一系列新的注释:

此时模型中的参数是一个n+1 维的向量,任何一个训练实例也都是n+1 维的向量,特 征矩阵X 的维度是 m*(n+1)。 因此公式可以简化为:

其中上标T代表矩阵转置

多变量梯度下降(Gradient Descent for Multiple Variables)

与单变量线性回归类似,在多变量线性回归中,我们也构建一个代价函数,则这个代价 函数是所有建模误差的平方和,即:

梯度下降法实践 1-特征缩放(Gradient Descent in Practice I - Feature Scaling)

在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯 度下降算法更快地收敛。 以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为 0- 2000 平方英尺,而房间数量的值则是 0-5,以两个参数分别为横纵坐标,绘制代价函数的等 高线图能,看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。

解决的方法是尝试将所有特征的尺度都尽量缩放到-1 到 1 之间。如图

4.4 梯度下降法实践 2-学习率( 4 - 4 - Gradient Descent in Practice II - Learning Rate )

4.5 特征和多项式回归(Features and Polynomial Regression) 如房价预测问题,

通常我们需要先观察数据然后再决定准备尝试怎样的模型。 另外,我们可以令:

从而将模型转化为线性回归模型。 根据函数图形特性,我们还可以使:

4.6 正规方程

到目前为止,我们都在使用梯度下降算法,但是对于某些线性回归问题,正规方程方法 是更好的解决方案。如:

即:

运用正规方程法求解参数:

总结一下,只要特征变量的数目并不大,标准方程是一个很好的计算参数 θ 的替代方 法。具体地说,只要特征变量数量小于一万,我通常使用标准方程法,而不使用梯度下降法。 随着我们要讲的学习算法越来越复杂,例如,当我们讲到分类算法,像逻辑回归算法, 我们会看到, 实际上对于那些算法,并不能使用标准方程法。对于那些更复杂的学习算法, 我们将不得不仍然使用梯度下降法。因此,梯度下降法是一个非常有用的算法,可以用在有 大量特征变量的线性回归问题。或者我们以后在课程中,会讲到的一些其他的算法,因为标 准方程法不适合或者不能用在它们上。但对于这个特定的线性回归模型,标准方程法是一个 比梯度下降法更快的替代算法。所以,根据具体的问题,以及你的特征变量的数量,这两种 算法都是值得学习的。


课程代码:https://github.com/HuangCongQing/MachineLearning_Ng 本文参考自-黄海广博士 斯坦福大学 2014机器学习教程中文 笔记 链接:http://pan.baidu.com/s/1dF2asvf 密码:1ewf

分享吴恩达机器学习视频 下载 链接: 链接: http://pan.baidu.com/s/1pKLATJl 密码: xn4w

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 域名解析后主机记录和记录值怎么填写?都是什么意思?

    双愚
  • 物联网和多路访问边缘计算(MEC):完美匹配

    并非每一个主要的技术趋势都会落地到实处, 其中有些人是很好的技术,但很难实施。其他技术似乎目的是是寻找问题的解决方案。但是当你发现几种技术配合得很好时,就会加速...

    双愚
  • 服务网格(Service Mesh)及其工具选项概述

    原文地址:https://dzone.com/articles/an-overview-of-the-service-mesh-and-its-tooling-...

    双愚
  • 想去机器学习初创公司做数据科学家?这里有最常问的40道面试题

    大数据文摘
  • 更快更准的异常检测?交给分布式的 Isolation Forest 吧

    在异常检测的众多算法中,Isolation Forest 算法有着非常重要的地位。这种从异常点的定义出发构建的检测模型往往在工业界更实用,除了带来令人惊喜的检测...

    卢欣
  • 推荐|机器学习中的模型评价、模型选择和算法选择!

    摘要:模型评估、模型选择和算法选择技术的正确使用在学术性机器学习研究和诸多产业环境中异常关键。 ? 本文回顾了用于解决以上三项任务中任何一个的不同技术,并参考理...

    IT派
  • 跟着鸡排看世界 AutoEx:v1.0.6 实践

    恰巧看到鸡排大大五一更新了一款小神器,瞅着很nice,今天特意玩了一波,感觉很棒~~~

    HLQ_Struggle
  • 科学瞎想系列之六十八 捋一捋异步电机的各种转矩

    经常有宝宝们问有关电机转矩的问题,特别是异步电机,有额定转矩、起动转矩、堵转转矩、最大转矩、电磁转矩、负载转矩等等,都乱套了,这些转矩都是指什么?它们之间又是...

    标准答案
  • qmake自定义函数

    Qt君
  • 前端为什么要关注 Serverless?

    Serverless 的概念或应用场景我们以前讲过很多,这里不再冗述。概括性地讲 —— Serverless 的内涵就是对全部底层资源和运维工作的封装,让开发者...

    Aceyclee

扫码关注云+社区

领取腾讯云代金券