Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 1776 Solved: 1055
请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。
第一行一个整数N,接下来N行,第i+2..i+N-1行,每行两个数,依次表示a[i],b[i] (0 < = i < N)。
输出N行,每行一个整数,第i行输出C[i-1]。
5 3 1 2 4 1 1 2 4 1 4
24 12 10 6 1
题目中给的公式不好搞
我们按照套路,将$B$翻转一下
$$C(k) = \sum_0^n a_i * b_{n - 1 - i + k}$$
此时后面的式子就只与$k$有关了
设$$D(n - 1 + k) = \sum_0^n a_i * b_{n - 1 - i + k}$$
直接NTT
#include<cstdio>
#define swap(x,y) x ^= y, y ^= x, x ^= y
#define LL long long
using namespace std;
const int MAXN = 3 * 1e5 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0',c = getchar();
return x * f;
}
const int P = 998244353, g = 3, gi = 332748118;
int N;
int
LL a[MAXN], b[MAXN], r[MAXN];
LL fastpow(LL a, int p, int mod) {
LL base = 1;
while(p) {
if(p & 1) base = (base * a) % mod;
a = (a * a) % mod; p >>= 1;
}
return base % mod;
}
LL NTT(LL *A, int type, int N, int mod) {
for(int i = 0; i < N; i++)
if(i < r[i]) swap(A[i], A[r[i]]);
for(int mid = 1; mid < N; mid <<= 1) {
LL W = fastpow( (type == 1) ? g : gi, (P - 1) / (mid << 1), mod );
for(int j = 0; j < N; j += (mid << 1)) {
int w = 1;
for(int k = 0; k < mid; k++, w = (w * W) % P) {
LL x = A[j + k] % P, y = w * A[j + k + mid] % P;
A[j + k] = (x + y) % P;
A[j + k + mid] = (x - y + P) % P;
}
}
}
if(type == -1) {
LL inv = fastpow(N, mod - 2, mod);
for(int i = 0; i < N; i++)
A[i] = (A[i] * inv) % mod;
}
}
int main() {
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
N = read();
for(int i = 0; i < N; i++)
a[i] = read(), b[N - i] = read();
int limit = 1, L = 0;
while(limit <= N + N) limit <<=1, L++;
for(int i = 0; i < limit; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT(a, 1, limit, P); NTT(b, 1, limit, P);
for(int i = 0; i < limit; i++) a[i] = (a[i] * b[i]) % P;
NTT(a, -1, limit, P);
for(int i = 0; i < N * 2; i++)
printf("%d\n",a[i] % P);
return 0;
}