# Mathematica 谜中智 | 趣味象棋 一马平川【谜底篇】

FindHamiltonPath 函数的算法也是一种启发式算法，但相对于之前回溯算法的优势也显而易见，它不仅可以控制初始位置，而且可以控制终止位置。最后放大招 Manipulate，把45个可行解和巡回路径都动态演示出来，解题完毕。

[1] F. Wu,"A Chinese Knights Tour", Wolfram DemonstrationsProject. （http://www.demonstrations.wolfram.com/AChineseKnightsTour/）

[2] J. Warendorff, "The Knights Tour",Wolfram Demonstrations Project.（http://demonstrations.wolfram.com/TheKnightsTour/）

[3] H. C. von Warnsdorff, "DesRösselsprungs Einfachste und Allgemeinste Lösung", Schmalkalden, 1823.

[4] I. Pohl, "A Method for Finding Hamilton Paths and Knight'sTours", Communications of the ACM, Vol.10 (7), 1967, pp. 446 - 449.

[5] K. Alwan, K. Waters, "Finding Re-entrant Knight's Tours on N-by-MBoards", ACM Annual Southeast Conference, 1992, pp. 377 - 382.

[6] M. Dupuis, S. Wagon, "Laceable Knights", ARS Math. Contemp., 2015, pp.115-124.

[7] S. Wagon, "Laceable Knight Graphs", Wolfram DemonstrationsProject.（http://demonstrations.wolfram.com/LaceableKnightGraphs/）

[8] J. McLoone, "Solving the Knight's Tour on and off theChess-board", Wolfram Blog.（http://blog.wolfram.com/2014/09/04/solving-the-knights-tour-on-and-off-the-chess-board/）

[9] K. Scherer, "Chess", Wolfram Demonstrations Project.（http://demonstrations.wolfram.com/Chess/）

[10] F. H. Hsu, Behind Deep Blue: Building the Computer that Defeated theWorld Chess Champion, Princeton University Press. 2002

284 篇文章51 人订阅

0 条评论

## 相关文章

782

### Steering Behaviors 详解

Steering Behaviors 意在使游戏中的AI个体具备真实的运动行为，通过对力的施加与整合，使游戏个体具备类生命体般的运动特征。

8351

5144

37210

3001

### R语言的各种统计分布函数

http://www.bio-info-trainee.com/1656.html

2643

2108

3545