scikit-learning小试牛刀

简单使用下sklearning

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Perceptron
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
from matplotlib.colors import ListedColormap

iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

# 标准化
sc = StandardScaler()
# 按照train样本标准化,
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
'''sc.scale_标准差, sc.mean_平均值, sc.var_方差'''

# 创建分类器类,设置参数
ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0)

# 使用训练数据训练
ppn.fit(X_train_std, y_train)

# 预测
y_pred = ppn.predict(X_test_std)

print('Misclassified samples: %d' % (y_test != y_pred).sum())
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))

x1_min, x1_max = X_train_std[:, 0].min() - 1, X_train_std[:, 0].max() + 1
x2_min, x2_max = X_train_std[:, 1].min() - 1, X_train_std[:, 1].max() + 1

resolution = 0.01
# xx1 X轴,每一个横都是x的分布,所以每一列元素一样,xx2 y轴 每一列y分布,所以每一横元素一样
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),np.arange(x2_min, x2_max, resolution))

# .ravel() 函数是将多维数组降位一维,注意是原数组的视图,转置之后成为两列元素
z = ppn.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
'''
contourf画登高线函数要求 *X* and *Y* must both be 2-D with the same shape as *Z*, or they
    must both be 1-D such that ``len(X)`` is the number of columns in
    *Z* and ``len(Y)`` is the number of rows in *Z*.
'''
# z形状要做调整
z = z.reshape(xx1.shape)

# 填充等高线的颜色, 8是等高线分为几部分
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])

for i, value in enumerate(np.unique(y)):
    temp = X_train_std[np.where(y_train==value)]
    plt.scatter(x=temp[:,0],y=temp[:,1], marker=markers[value],s=69, c=colors[value], label=value)


plt.scatter(x=X_test_std[:, 0],y=X_test_std[:,1], marker= 'o',s=69, c='none', edgecolors='r', label='test test')


plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.contourf(xx1, xx2, z, len(np.unique(y)), alpha = 0.4, cmap = cmap)
plt.legend(loc='upper left')
plt.show()

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏磐创AI技术团队的专栏

FastText的内部机制

13930
来自专栏简书专栏

基于RandomForestRegressor的波士顿房价回归预测

2018年8月27日笔记 sklearn官方英文用户使用指南:https://sklearn.org/user_guide.html sklearn翻译中文...

33530
来自专栏LhWorld哥陪你聊算法

【TensorFlow篇】--Tensorflow框架初始,实现机器学习中多元线性回归

TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流...

12710
来自专栏杂七杂八

tensorflow oom报错OOM when allocating tensor with shape

今天在GPU上运行卷积神经网络手写数字,报了如下错误Resource exhausted: OOM when allocating tensor with s...

77490
来自专栏超智能体

YJango:TensorFlow高层API Custom Estimator建立CNN+RNN的演示

该文是YJango:TensorFlow中层API Datasets+TFRecord的数据导入的后续。

1.5K70
来自专栏贾志刚-OpenCV学堂

图像特征之局部二值模式

一:局部二值模式(LBP)介绍 局部二值模式(Local Binary Pattern)主要用来实现2D图像纹理分析。其基本思想是用每个像素跟它周围的像素相比...

40360
来自专栏Deep Learning 笔记

图像识别(二) cifar10_input.py详解

tf.variable_scope和tf.name_scope的用法:https://blog.csdn.net/uestc_c2_403/article/de...

62760
来自专栏人工智能头条

Keras/Python深度学习中的网格搜索超参数调优(上)

78560
来自专栏GAN&CV

从0到1实现YOLO v3(part two)

本部分是 从0到1 实现YOLO v3 的第二部分,前两部分主要介绍了YOLO的工作原理,包含的模块的介绍以及如何用pytorch搭建完整的YOLOv3网络结构...

25440
来自专栏机器学习原理

深度学习——CNN(4)分析

22240

扫码关注云+社区

领取腾讯云代金券