几种监督式学习算法的比较

【编者按】本文的作者是计算机工程师Kevin Markham;热衷烹饪,痴迷戏剧,偶尔参加铁人三项运动;为 General Assembly 讲授为期11周的数据科学课程,在 SlideRule 指导学生学习数据科学,还是 约翰·霍普金斯大学数据科学Coursera专项课程 的社区教学助理(CTA);业余时间制作 视频教程参加 Kaggle 的比赛。日前他撰文谈及了几种监督式学习算法的比较,值得一看。

以下为正文:

我所讲授的 数据科学课程 涵盖了该领域大部分内容,但尤其关注机器学习(machine learning)。除了讲授模型的评估过程和度量方法以外,很明显,我们还讲算法本身,主要是监督式学习(supervised learning)算法。

在为期11周的课程接近尾声的时候,我们花了几个小时检查所用的课程资料。我们希望学生能够逐渐理解他们所学的东西。要掌握的技能之一就是在解决机器学习的问题时,有能力在不同的监督式学习算法中做出明智的选择。虽然使用“蛮力”(把每种情况都试一遍,看看哪种最好)的方法有其价值所在,但比这价值大得多的是能够在不同算法之间做出权衡利弊的选择。

我决定为学生们组织一场比赛。我给他们一张空白的表格,列出所讲的监督式学习算法,让学生从几个不同维度对这些算法进行比较。我在网上找到了这样的表格,自己先弄一张再说!下面就是,一起看看:

上图为表格部分截图,中文版下载请点击 这里。

贡献出这张表格,有两个原因:

  • 其一,它可以用来讲课或者学习( 下载 下来拿去用吧)。
  • 其二,这张表格需要完善,人多力量大!

这张表格是集鄙人经验与研究的产物,在任何这些算法的领域,我都称不上是专家。如果你有能够改进表格的建议,给我留言哟!

  • 是否在我的这些评估中存在误导或错误?(当然啦,有些比较维度本身就带有主观性。)
  • 是否存在应该添加到表格中的其他“重要的”对比维度?
  • 是否还有其他你希望加入到这张表格的算法?(目前,表格中只有我所讲授的算法。)

我意识到每种算法的特征及相应的评价都可以基于数据的具体情况(以及数据的调优程度)发生变化。因此有人会认为试图做“客观”的比较是欠考虑的。然而,我认为作为监督式学习算法入门的一般性参考,这张表仍然有其价值所在。

Duang~Duang~Duang~!

学习资源

  • Choosing a Machine Learning Classifier :Edwin Chen所做的概述,短小易懂,可读性强。
  • scikit-learn的“机器学习导图” :选择“正确”的估计器(estimator)。
  • Machine Learning Done Wrong :深思熟虑的建议,避免在机器学习中掉进常见的坑,有些建议涉及算法的选择。
  • Practical machine learning tricks from the KDD 2011 best industry paper :较上一项更高级的建议。
  • An Empirical Comparison of Supervised Learning Algorithms :发表于2006年的研究论文。
  • 查看所有来自Data School关于机器学习的帖子 。

补充说明:要做“锐推”, 请点击这里 ,还可以来 Kaggle 和 DataTau 讨论!

原文链接: Comparing supervised learning algorithms(译者/白华 责编/钱曙光)

原文发布于微信公众号 - 人工智能头条(AI_Thinker)

原文发表时间:2015-03-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏灯塔大数据

初学者如何快速入门人工智能?

? 此文是想要进入人工智能这个领域、但不知道从哪里开始的初学者最佳的学习资源列表。原文是 Ray Alez 编写的“Artificial Intelligen...

34450
来自专栏企鹅号快讯

人工智能大数据背后的神秘公式:贝叶斯公式

转自:工业智能化 大数据、人工智能、海难搜救、生物医学、邮件过滤,这些看起来彼此不相关的领域之间有什么联系?答案是,它们都会用到同一个数学公式——贝叶斯公式。它...

69450
来自专栏机器之心

专栏 | 李航教授展望自然语言对话领域:现状与未来

语音助手、智能客服、智能音箱、聊天机器人,近年各种自然语言对话系统如雨后春笋般地涌现,有让人眼花缭乱的感觉。一方面对话系统越来越实用化,另一方面当前技术的局限性...

18400
来自专栏镁客网

科普时间:OCR是人工智能的基础之一

39560
来自专栏大数据文摘

数据可视化:如何利用色彩来佐证观点

25760
来自专栏数据科学与人工智能

【数据科学】数据科学能回答什么样的问题?

机器学习是数据科学的发动机。每种机器学习方法(也称为算法)获取数据,反复咀嚼,输出结果。机器学习算法负责数据科学里最难以解释又最有趣的部分。数学的魔法在此发生。...

27680
来自专栏ATYUN订阅号

通过AI重现真实环境下的照明和反射

在网上购买地毯或布料时,你希望能说出它在现实生活中的样子吗?感谢麻省理工学院计算机科学与人工智能实验室(CSAIL)和法国Inria Sophia Antipo...

19220
来自专栏PaddlePaddle

实操|如何进阶深度学习工程师(下篇)

这里所定义的中阶选手,是深度学习理论基础扎实,实操方面尝试扩展深度学习更多应用场景的侠客。由此,从初阶→中阶,基本流程保持不变,变化的是每个步骤的深入程度。

14320
来自专栏新智元

周志华Deep Forrest论文参与者答网友问,或6月1日开源

【新智元导读】新智元之前发布周志华老师的Deep Forrest论文引起了广泛关注和讨论。本文作者Ji Feng正是该论文的参与者,他在知乎上对这篇论文的评论做...

359100
来自专栏智能算法

初学者如何从零学习人工智能?看完你就懂了

来自:开源中国社区 链接:http://www.oschina.net/news/78629/beginners-how-to-learn-from-zero-...

40470

扫码关注云+社区

领取腾讯云代金券