前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >李理:自动梯度求解 反向传播算法的另外一种视角

李理:自动梯度求解 反向传播算法的另外一种视角

作者头像
用户1737318
发布2018-06-06 14:45:19
6530
发布2018-06-06 14:45:19
举报
文章被收录于专栏:人工智能头条

想了解人工智能背后的那些人、技术和故事 欢迎关注 人工智能头条

本系列文章面向深度学习研发者,希望通过Image Caption Generation,一个有意思的具体任务,深入浅出地介绍深度学习的知识。本系列文章涉及到很多深度学习流行的模型,如CNN,RNN/LSTM,Attention等。本文为第四篇。 作者:李理 目前就职于环信,即时通讯云平台和全媒体智能客服平台,在环信从事智能客服和智能机器人相关工作,致力于用深度学习来提高智能机器人的性能。 相关文章: 李理:从Image Caption Generation理解深度学习(part I) 李理:从Image Caption Generation理解深度学习(part II) 李理:从Image Caption Generation理解深度学习(part III)

前面我们讲过了反向传播算法的详细推导过程,大家可能会觉得有些复杂。事实上其实就是链式求导法则的应用。今天我们将会继续讨论这个问题,不过是从Computational Graphs的角度,也就是我们之前说过的自动求导(Automatic Differentiation or Reverse-mode Differentiation)。并且通过CS231n的Assignment2来学习使用这种方法,通过这种方法来实现一个多层的神经网络。

Calculus on Computational Graphs: Backpropagation

首先我们介绍一篇博客文章: https://colah.github.io/posts/2015-08-Backprop/ 基本是翻译过来,不过部分地方是我自己的理解,建议读者结合这篇文章一起阅读。

简介

反向传播算法是神经网络的核心算法,不过这个算法在不同的领域被多次”发现“过,因此有不同的名称。

计算图

Computational Graphs

考虑一个简单的函数 e=(a+b)∗(b+1)e=(a+b)∗(b+1) 。这个函数有两个操作(函数),加法和乘法。为了指代方便,我们引入两个中间变量,c和d。

  • c=a+b
  • d=b+1
  • e=c∗d

下面我们把它画成一个计算图,每一个操作是图中一个节点,最基本的变量a和b也是一个节点。每个节点和它的输入变量直接有一条边。比如d的输入变量是b,那么d和b直接就有一条边。

任何一个显示定义的函数(隐函数不行,不过我们定义的神经网络肯定不会通过隐函数来定义)都可以分解为一个有向无环图(树),其中叶子节点是最基本的无依赖的自变量,而中间节点是我们引入的中间变量,而树根就是我们的函数。比如上面的例子,计算图如下所示:

给定每一个自变量的值,我们可以计算最终的函数值,对应与神经网络就是feedforward计算。具体用”算法“怎么计算呢?首先因为计算图是一个有向无环图,因此我们可以拓扑排序,先是叶子节点a和b,他们的值已经给定,然后删除a和b出发的边,然后c和d没有任何未知依赖,可以计算,最后计算e。计算过程如下图:

计算图的导数计算

首先我们可以计算每条边上的导数,也就是边的终点对起点的导数,而且导数是在起点的取前向计算值时的导数,具体过程如图所示:

有些边的导数不依赖于输入的值,比如:

但是还有很多边的导数是依赖于输入值的,比如:

因为在“前向”计算的过程中,每个节点的值都计算出来了,所以边的计算很简单,也不需要按照什么的顺序。

不过我们一般比较感兴趣的是最终函数对某个自变量的导数,比如

根据链式法则,只要找到这两个节点的所有路径,然后把路径的边乘起来就得到这条边的值,然后把所有边加起来就可以了。

比如上面的例子b到e有两条路径:b->c->e和b->d->e,所以

如果用“链式”法则来写就是

路径反过来而已。

使用上面的方法,我们可以计算任何一个点(上面的变量)对另外一个点(上面的变量)的导数。不过我们一般的情况是计算树根对所有叶子的导数,当然我们可以使用上面的算法一个一个计算,但是这样会有很多重复的计算。

比如a->e的路径是 a->c->e,b->e有一条边是b->c->e,其中c->e是重复的【这个例子不太好,我们可以想像c->e是一条很长的路径】,每次都重复计算c->e这个“子”路径是多余的。我们可以从后往前计算,也就是每个节点都是存放树根变量(这个例子是e)对当前节点的导数(其实也就是树根到当前节点的所有路径的和)。

反向导数计算

计算流程文字描述如下: 首先还是对这个图进行拓扑排序,不过是反过来。 首先是

这个没什么好说的。 然后计算

然后计算

然后计算

计算

前向导数计算

如果我们需要计算每一个变量对某一个变量的导数,就可以使用前向计算的方法。不过我们的神经网络都是相反——计算某个一个变量(一般是损失函数)对所有变量的导数,所以这里就不详细介绍了。

至此,本系列文章的第四部分告一段落。在接下来的文章中,作者将为大家详细讲述关于Optimization、常见的深度学习框架/工具的使用方法、使用自动求导来实现多层神经网络等内容,敬请期待。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2016-11-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 人工智能头条 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Calculus on Computational Graphs: Backpropagation
    • 简介
      • Computational Graphs
        • 计算图的导数计算
          • 反向导数计算
            • 前向导数计算
            相关产品与服务
            腾讯云小微
            腾讯云小微,是一套腾讯云的智能服务系统,也是一个智能服务开放平台,接入小微的硬件可以快速具备听觉和视觉感知能力,帮助智能硬件厂商实现语音人机互动和音视频服务能力。
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档