笔记之一

  • 1、初始化权重为0,或者为很小随机数random
  • 2、对于每个样本,按照下面步骤操作 1、计算输出值:

2、迭代更新权重:

      3、举几个例子:
  • 3、只有当样本可以线性分类并且学习率足够小时,迭代才会收敛,否则可以设置一个误差数,达到误差的情况下终止迭代,否则将不会停止
  • 4、简单看下这种方法为什么可行,看看迭代之后z值
  后一部分值要么为大于等于0,要么为负,最终结果逼近阈值

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏fangyangcoder

Andrew Ng机器学习课程笔记(一)之线性回归

http://www.cnblogs.com/fydeblog/p/7364598.html

20420
来自专栏CreateAMind

Deep Learning Book 中文5.7-6.2节 机器学习基础-深度前馈网络

监督学习算法、无监督学习算法、推动深度学习的挑战;基于梯度的学习:最大似然学习条件分布;不同的输出单元:多分类等。

8720
来自专栏AI科技评论

开发 | 用 Kaggle 经典案例教你用 CNN 做图像分类!

前言 在上一篇专栏中,我们利用卷积自编码器对 MNIST 数据进行了实验,这周我们来看一个 Kaggle 上比较经典的一个图像分类的比赛 CIFAR( CIFA...

41460
来自专栏yl 成长笔记

图形搜索中用到的机器学习基础介绍

针对目标图像(具有统一特征的图像),进行基于深度学习技术的模型训练,通过调优模型结构与参数,得到对于指定图像具有提取特征信息的模型 M。将库中所有图像通过 M ...

9430
来自专栏素质云笔记

微调︱caffe中fine-tuning模型三重天(函数详解、框架简述)+微调技巧

本文主要参考caffe官方文档[《Fine-tuning a Pretrained Network for Style Recognition》](http:/...

85750
来自专栏LhWorld哥陪你聊算法

【深度学习篇】--神经网络中的卷积神经网络

Convolutional neural networks  视觉皮层、感受野,一些神经元看线,一些神经元看线的方向,一些神经元有更大的感受野,组合 底层的图案...

9610
来自专栏锦小年的博客

3. R语言随机数生成

1. 均匀分布 函数: runif(n, min=0, max=1),n 表示生成的随机数数量,min 表示均匀分布的下限,max 表示均匀分布的上限,若省略参...

382100
来自专栏小詹同学

深度学习入门笔记系列 ( 四 )

本系列将分为 8 篇 。今天是第四篇 。总是理论有些枯燥 ,今天来动手基于 TF 框架实现两个简单的案例 ,以小搏大熟悉一下整个过程 。整体来说 ,训练神经网络...

8420
来自专栏LhWorld哥陪你聊算法

【深度学习篇】--神经网络中的池化层和CNN架构模型

降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合) 减少输入图片大小(降低了图片的质量)也使得神经网络可...

27020
来自专栏文武兼修ing——机器学习与IC设计

基于sklearn的线性支持向量机分类器原理代码实现

原理 分类器 机器学习的分类器,均可以看成一个或一组超平面,将label不同的数据点在数据空间中分开。对于线性可分问题,属于相同label的数据点在数据空间中可...

42590

扫码关注云+社区

领取腾讯云代金券