后端视角的高性能、高可用设计概要

应用开发,不只是实现什么功能,完成什么算法,使用了什么技术就好的,还应当有产品级的意识。理论落地到实际使用,转化为生产力才有意义。作为产品,首先是可用。不可用的产品,功能、特性吹的天花乱坠也不能为用户带来价值,因此我们时常会提到高性能和高可用。 本 PPT 大致总结了高性能、高可用架构要考虑的方面,以及通行的一些手段,并没有详细说明每一个手段具体都要怎么做,我想网上应该有很多的相关信息能够查询到,这里就只做概要介绍了。对于每个项目,可能并不是每一个手段都要用到,也应当针对项目具体问题具体分析。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏量子位

DeepMind提出训练网络新方法,快速找到最佳超参数和模型

安妮 编译自 DeepMind官方博客 量子位 出品 | 公众号 QbitAI 从围棋到雅达利游戏、再到图像识别和语言翻译,神经网络在各领域已经崭露头角。 一直...

3678
来自专栏人工智能

如何提高深度学习的性能

您可以使用这20个提示,技巧和技术来解决过度拟合问题并获得更好的通用性

7007
来自专栏AI科技大本营的专栏

【AI 技术精选】神经网络结构深入分析和比较

作者 | Eugenio Culurciello 翻译 | AI科技大本营(rgznai100) 深度神经网络和深度学习是既强大又受欢迎的算法。这两种算法取得的...

3586
来自专栏机器之心

资源 | 谷歌开源AdaNet:基于TensorFlow的AutoML框架

结合不同机器学习模型预测的集成学习在神经网络中得到广泛使用以获得最优性能,它从其悠久历史和理论保证中受益良多,从而在 Netflix Prize 和多项 Kag...

933
来自专栏小小挖掘机

推荐系统遇上深度学习(十一)--神经协同过滤NCF原理及实战

好久没更新该系列了,最近看到了一篇关于神经协同过滤的论文,感觉还不错,跟大家分享下。

7064
来自专栏PPV课数据科学社区

【技术】从文本挖掘和机器学习中洞悉数据

文本挖掘分析的是包含在自然语言文本中的数据。它可以帮助企业从文本型数据中获得具有潜在价值的商业洞察力,比如Word文档、邮件或Facebook、Tw...

2786

理解任何机器学习算法的6个问题

有很多机器学习算法,每个算法都是一个独立的研究。

2209
来自专栏机器之心

观点 | 机器学习新手工程师常犯的6大错误

选自Medium 机器之心编译 参与:刘晓坤、路雪 机器学习中有很多构建产品或解决方案的方式,每种方式的假设情况都不一样。很多时候,如何找到合理的假设并不容易...

35010
来自专栏AI研习社

股票跌跌不休,不如用神经网络来预测一下未来走势

机器学习和深度学习已经成为量化对冲基金常用最大化其利润的常用的新的有效策略。 作为一名人工智能和金融爱好者,这是令人振奋的消息,因为它结合了我感兴趣的两个领域。...

1192
来自专栏机器之心

观点 | AutoML、AutoKeras......这四个「Auto」的自动机器学习方法你分得清吗?

让我们先来看一个简短的童话故事… 从前,有一个魔法师,他使用一种无人再使用的编程语言,在一种无人再使用的框架下训练模型。一天,一位老人找到他,让他为一个神秘的...

1624

扫码关注云+社区

领取腾讯云代金券