Sklearn参数详解—SVM

总第108篇

本篇主要讲讲Sklearn中SVM,SVM主要有LinearSVC、NuSVC和SVC三种方法,我们将具体介绍这三种分类方法都有哪些参数值以及不同参数值的含义。

在开始看本篇前你可以看看这篇:支持向量机详解

LinearSVC

class sklearn.svm.LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000)

penalty:正则化参数,L1和L2两种参数可选,仅LinearSVC有。 loss:损失函数,有‘hinge’和‘squared_hinge’两种可选,前者又称L1损失,后者称为L2损失,默认是是’squared_hinge’,其中hinge是SVM的标准损失,squared_hinge是hinge的平方。 dual:是否转化为对偶问题求解,默认是True。 tol:残差收敛条件,默认是0.0001,与LR中的一致。 C:惩罚系数,用来控制损失函数的惩罚系数,类似于LR中的正则化系数。 multi_class:负责多分类问题中分类策略制定,有‘ovr’和‘crammer_singer’ 两种参数值可选,默认值是’ovr’,'ovr'的分类原则是将待分类中的某一类当作正类,其他全部归为负类,通过这样求取得到每个类别作为正类时的正确率,取正确率最高的那个类别为正类;‘crammer_singer’ 是直接针对目标函数设置多个参数值,最后进行优化,得到不同类别的参数值大小。 fit_intercept:是否计算截距,与LR模型中的意思一致。 class_weight:与其他模型中参数含义一样,也是用来处理不平衡样本数据的,可以直接以字典的形式指定不同类别的权重,也可以使用balanced参数值。 verbose:是否冗余,默认是False. random_state:随机种子的大小。 max_iter:最大迭代次数,默认是1000。

对象

coef_:各特征的系数(重要性)。 intercept_:截距的大小(常数值)。

NuSVC

class sklearn.svm.NuSVC(nu=0.5, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None))

nu:训练误差部分的上限和支持向量部分的下限,取值在(0,1)之间,默认是0.5 kernel:核函数,核函数是用来将非线性问题转化为线性问题的一种方法,默认是“rbf”核函数,常用的核函数有以下几种:

表示

解释

linear

线性核函数

poly

多项式核函数

rbf

高斯核函数

sigmod

sigmod核函数

precomputed

自定义核函数

关于不同核函数之间的区别,可以参考这篇文章:https://blog.csdn.net/batuwuhanpei/article/details/52354822

degree:当核函数是多项式核函数的时候,用来控制函数的最高次数。(多项式核函数是将低维的输入空间映射到高维的特征空间) gamma:核函数系数,默认是“auto”,即特征维度的倒数。 coef0:核函数常数值(y=kx+b中的b值),只有‘poly’和‘sigmoid’核函数有,默认值是0。 max_iter:最大迭代次数,默认值是-1,即没有限制。 probability:是否使用概率估计,默认是False。 decision_function_shape:与'multi_class'参数含义类似。 cache_size:缓冲大小,用来限制计算量大小,默认是200M。

对象

support_:以数组的形式返回支持向量的索引。 support_vectors_:返回支持向量。 n_support_:每个类别支持向量的个数。 dual_coef_:支持向量系数。 coef_:每个特征系数(重要性),只有核函数是LinearSVC的时候可用。 intercept_:截距值(常数值)。

SVC

class sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None)

C:惩罚系数。 SVC和NuSVC方法基本一致,唯一区别就是损失函数的度量方式不同(NuSVC中的nu参数和SVC中的C参数)。

方法

三种分类方法的方法基本一致,所以就一起来说啦。

decision_function(X):获取数据集X到分离超平面的距离。 fit(X, y):在数据集(X,y)上使用SVM模型。 get_params([deep]):获取模型的参数。 predict(X):预测数据值X的标签。 score(X,y):返回给定测试集和对应标签的平均准确率。

原文发布于微信公众号 - 张俊红(zhangjunhong0428)

原文发表时间:2018-05-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏学海无涯

Android开发之奇怪的Fragment

说起Android中的Fragment,在使用的时候稍加注意,就会发现存在以下两种: v4包中的兼容Fragment,android.support.v4.ap...

3155
来自专栏聊聊技术

原 数据结构-二叉搜索树(Binary S

2867
来自专栏xingoo, 一个梦想做发明家的程序员

AOE关键路径

这个算法来求关键路径,其实就是利用拓扑排序,首先求出,每个节点最晚开始时间,再倒退求每个最早开始的时间。 从而算出活动最早开始的时间和最晚开始的时间,如果这两个...

2507
来自专栏计算机视觉与深度学习基础

Leetcode 114 Flatten Binary Tree to Linked List

Given a binary tree, flatten it to a linked list in-place. For example, Given...

1938
来自专栏拭心的安卓进阶之路

Java 集合深入理解(12):古老的 Vector

今天刮台风,躲屋里看看 Vector ! 都说 Vector 是线程安全的 ArrayList,今天来根据源码看看是不是这么相...

2437
来自专栏拭心的安卓进阶之路

Java 集合深入理解(6):AbstractList

今天心情比天蓝,来学学 AbstractList 吧! ? 什么是 AbstractList ? AbstractList 继承自 AbstractCollec...

19110
来自专栏聊聊技术

原 初学图论-Kahn拓扑排序算法(Kah

2878
来自专栏xingoo, 一个梦想做发明家的程序员

20120918-向量实现《数据结构与算法分析》

#include <iostream> #include <list> #include <string> #include <vector> #include...

1716
来自专栏Phoenix的Android之旅

Java 集合 Vector

List有三种实现,ArrayList, LinkedList, Vector, 它们的区别在于, ArrayList是非线程安全的, Vector则是线程安全...

662
来自专栏刘君君

JDK8的HashMap源码学习笔记

3008

扫码关注云+社区